BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE I SEMESTER 2023-2024

BITS F494/CE F434

Environmental Impact Assessment Comprehensive Examination (Closed Book)

Dated: 12.12.2023

Max. Marks: 80 Duration: 180 minutes

Answer all questions.

Answer all parts of a question together.

- 1. Determine the flow in river required per 1000 population for disposing off sewage from a residential town with the following data: [15]
 - a. Average temperature of river water = 20° C and Initial DO concentration of river=8.38 ppm
 - b. 5-day BOD of sewage at 20° C = 300 ppm
 - c. Average sewage flow = 150 litre per person per day
 - d. K at 20° C = 0.15 per day
 - e. R at 20° C = 0.27 per day
 - f. Minimum DO to be provided in the river water = 4 ppm
 - g. Saturation DO of river water at 20° C = 8.38 ppm
 - h. DO of sewage = 0
 - i. BOD of river water =0

2. Find out the weighted arithmetic water quality index for the following data of water sample: [10]

\mathcal{C}	1 2	\mathcal{E}	
Parameters	BIS standard	Ideal Value	Observed Value
pН	8.5	7	7.9
EC (mS/cm)	65	50	100
TDS (mg/l)	500	250	270
TH (mg/l)	300	200	230
Ca (mg/l)	75	40	50
Mg (mg/l)	30	20	40
Fe (mg/l)	0.3	0.2	0.25
F(mg/l)	1.2	0.7	0.8
Turbidity (NTU)	5	2	3

3. Find out the air quality index by the method given by Central Pollution Control Board, New Delhi for the following air sample data of ITO Delhi. [10]

Parameters	Observed	Value
	$(\mu g/m^3)$	
PM_{10}	82	
PM _{2.5}	64	
NO_2	83	
SO_2	285	

AQI category	Range	PM ₁₀ (µg/m³),Standard values	PM _{2.5} (μg/m ³),Standard values	NO ₂ (μg/m³),Standard values	SO ₂ (μg/m ³),Standard values
NAAQ	0-500	100	60	80	80
Standard					
Good	0-50	0-50	0-30	0-40	0-40
Satisfactory	51-100	51-100	31-60	41-80	41-80

Moderately	101-	101-250	61-90	81-180	81-380
Polluted	200				
Poor	201-	251-350	91-120	181-280	381-800
	300				
Very Poor	301-	351-430	121-250	281-400	801-1600
	400				
Severe	401-	430+	250+	400+	1600+
	500				

- 4. A coal burning power plant burns 5.25 tons of coal per hour and discharges the combustion product through a stack that has an effective height of 80 m. The coal has Sulphur content of 4.5 % and the wind velocity at the top of the stack is 7 m/s. Determine the following: [10]
 - a. Ground level concentration at a distance of 4.5 km downwind at the Centre line of plume
 - b. Crosswind distance 0.5 km either side of Centre line (for same downwind distance) {Take $\sigma_v = 380 \text{ m}, \sigma_Z = 200 \text{ m}$ }.
 - c. If $\sigma_{y/}$ σ_{Z} ratio is constant, find the relationship between σ_{Z} and stack height, so that maximum concentration downwind will occur.
- 5. Please explain the following:
 - a. Prepare a map of physical disturbances in the growth of flora and fauna by defining zone of influence.
 - b. What do you understand by terrestrial species for the prediction of biological impact?
 - c. List the impact on the health of an employee, working in Coal mines project.
 - d. If a 200 bed multi-specialty hospital comes in Pilani, explain the socio economic impacts of the project.
 - e. What do you understand by ISO1400? Write an Environmental Policy for a Pulp and paper industry.
 - f. List 10 Personal Protective equipment and explain the usage.
 - g. What do you understand by Off Site Emergency Plan, discuss in detail? [2X7=14]
- 6. Suppose each customer put out 0.25 m³ of waste each week. Packer tucks with a compaction ratio 4 take 0.4 minute per customer to collect the waste. Two trucks are being considered: one that makes two trips per day to the disposal site, and other that makes three. [15]

Trips per day disposal site	2	3
Truck volume (m ³)	27	15
Annualized(maintenance + running) Tuck Cost) (\$/yr)	1,20,000	70,000
Time driving, unloading, breaks (min/day)	160	215

- a. Operating 5 days per week, with once-per-week pick up, how many customers would each truck service?
- b. How many hours per day would each truck and crew have to operate to fill the truck each day?
- c. With the cost of crew being \$ 40 per hour, what is the total annual cost of trucks and crew for each system? From that, find the annual cost per customer. Which system is less expensive.
- 7. The following are the rate of rainfall for successive 20 minutes period of a 140 minute storm 3,
 - 3, 12, 7.5, 2, 2, 5 cm/hr. taking the value of Φ_{index} 3.5 cm/hr. Find the net runoff in cm. if the catchment area is 20 km^2 , calculate the amount of Ni in runoff in kg after the end of storm. Take Ni concentration in runoff water as 0.5 mg/l.