BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 Second Semester 2022-23
 BITS F114 (General Mathematics - II)
 Mid-Semester Examination (Closed Book)

Date: 04 April, 2023
Time: 90 Minutes
Max. Marks: 25
Note:

- Notations/symbols have their usual meaning.
- Start new question on a fresh page. Moreover, answer each subpart of a question in continuation.
- Draw the figures as and when required.
Q.1(A). Discuss the symmetries of the polar curve $r=1+\sin \theta$. Find all the points of intersections of this curve with the curve $r=3(1-\sin \theta)$.
Q.1(B). Sketch the polar curve $r=\frac{12}{3+\sin \theta}$. Find the directrix and label the center, focus and all the vertices in the polar coordinate.
Q.2. The position of a moving particle in the $x y$-plane at time t is $\vec{r}(t)=(t-\sin t) \hat{\imath}+(1-\cos t) \hat{\jmath}$. Find the time when the particle achieves the maximum speed. Also find maximum speed.
Q.3. Consider the following function:

$$
f(x, y)=\frac{x y+y^{3}}{x^{2}+y^{2}}
$$

(A) Find the set A of points where f is discontinuous.
(B) Can we redefine f on \mathbb{R}^{2} in a manner so that it would become continuous on A ? Justify.
(C) Assume $f(0,0)=0$, does the directional derivative at origin in the direction of $\vec{u}=0 \hat{\imath}+5 \hat{\jmath}$ exist? Justify?
Q.4. For what values of the constant $k, f(x, y)=x^{2}++k x y+y^{2}$ has a local minimum at $(0,0)$? [4]

