BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 Second Semester 2022-23
 BITS F114 (General Mathematics - II)
 Comprehensive Examination-Part A (Closed Book)

Date: 10 ${ }^{\text {th }}$ July, 2023
Time: 2 Hrs
Max. Marks: 30
Note:

- Notations/symbols have their usual meaning.
- Start new question on a fresh page. Moreover, answer each subpart of a question in continuation.
- Draw the figures as and when required.
Q.1. Prove or disprove that if the speed of a particle moving in a plane is constant, then its acceleration is zero.
Q.2. Draw the curve $r=(1 / 2)+\cos \theta, 0 \leq \theta \leq 2 \pi$.
Q.3. If $\frac{1}{w}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, then determine $\frac{\partial w}{\partial y}$ at $(30,45,90)$.
Q.4. Sketch the region of integration and evaluate

$$
\begin{equation*}
I=\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x \tag{4}
\end{equation*}
$$

Q.5. Solve the differential equation $\left(2 x^{2}+y\right) d x+\left(x^{2} y-x\right) d y=0$
Q.6. Transform the differential equation $(y+1) \frac{d y}{d x}+x\left(y^{2}+2 y\right)=x$ in to a linear differential equation of first order and then find the solution.
Q.7. Given that $y=x+1$ is a solution of $(x+1)^{2} \frac{d^{2} y}{d x^{2}}-3(x+1) \frac{d y}{d x}+3 y=0$. Find the other linearly independent solution.
Q.8. Find the general solution of $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=4 x^{2}$ by method of undetermined coefficients. [5]

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 Second Semester 2022-23
 BITS F114 (General Mathematics - II)
 Comprehensive Examination-Part B (Open Book)

Date: $10^{\text {th }}$ July, 2023
Time: 60 Min
Max. Marks: 15
Q.1. If f and g are two analytic functions defined on a common domain \mathbb{D} such that:
$\operatorname{Re}(f(z))=\operatorname{Re}(g(z))$, for all z in \mathbb{D}, then show that $f(z)=g(z)+c$, where c is a pure imaginary constant.
Q.2. Let

$$
f(t)=\left\{\begin{array}{cc}
0, \quad 0 \leq t<\pi \\
t-\pi, & \pi \leq t<2 \pi \\
0, & t \geq 2 \pi
\end{array}\right.
$$

write $f(t)$ with the help of Heaviside unit step function, and compute Laplace transform of $f(t)$ by using second shift property.
Q.3. Use Laplace transform method to solve the initial value problem

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=6 e^{-t}, \quad y(0)=1, y^{\prime}(0)=2 \tag{5}
\end{equation*}
$$

