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Note: 

• Notations/symbols have their usual meaning. 

• Start new question on a fresh page. Moreover, answer each subpart of a question in continuation. 

• Draw the figures as and when required. 

 

Q.1. Prove or disprove that if the speed of a particle moving in a plane is constant, then its 

acceleration is zero.                     [3] 

 

Q.2. Draw the curve  20,cos)2/1( r .                  [3] 
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zyxw

1111
 , then determine 

y

w




at (30, 45, 90).                 [3] 

 

Q.4. Sketch the region of integration and evaluate  
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Q.5. Solve the differential equation 0)()2( 22  dyxyxdxyx                [4] 

 

Q.6. Transform the differential equation xyyx
dx
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equation of first order and then find the solution.                 [4] 

 

Q.7. Given that y = x + 1 is a solution of 03)1(3)1(
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Q.8. Find the general solution of 2
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  by method of undetermined coefficients. [5]  
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Q.1. If f and g are two analytic functions defined on a common domain 𝔻 such that:  

Re (f (z)) = Re (g (z)), for all z in 𝔻, then show that f (z) = g (z) + c, where c is a pure 

imaginary constant.                             [5] 

 

Q.2. Let 

























2

2

0

,0

,

,0

)(

t

t

t

ttf , 

write f (t) with the help of Heaviside unit step function, and compute Laplace transform 

of f (t) by using second shift property.                           [5] 

 

 

Q.3. Use Laplace transform method to solve the initial value problem  
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