Birla Institute of Technology & Science, Pilani

First Semester 2022-2023 BITS F218: General Mathematics III End-Semester Exam (Closed book)

Note :

- (i) Question Paper is divided into two parts, **PART A** and **PART B**. **PART A** consist of multiple choice questions and **PART B** is descriptive.
- (ii) **PART B** question paper will be given only after submission of **PART A**.
- (iii) Rough work should be done at the end of answer book provided and finally it should be crossed.
- (iv) Write your name and ID number in the space given in PART A.
- (v) There are **TEN** questions in **PART A.** Write the most appropriate answer in the box provided below and nowhere else. Each **correct answer** carries **1 marks** and **wrong answer** (-0.25) mark. **Overwriting/cutting will carry ZERO credit.**

ID No.	Name	Signature od Invigilator

Part A

Max Marks 10

Max time: 30 mins

Date: 23-12-2022

Q.No.	1	2	3	4	5	6	7	8	9	10
Ans.										

1. If the homogeneous system AX = 0 has a non-trivial solution, then

(A) $ A \neq 0$, (B) $ A > 0$,	(C) $ A = 0$,	(D) $ A < 0$
------------------------------------	-----------------	---------------

- 2. Let *A* and *B* be row-equivalent matrices, then
- (A) A is invertible iff B is invertible, (B) det(A) = det(B)(C) $rank(A) \ge rank(B)$, (D) $rank(A) \le rank(B)$ 3. If eigen values of $A = \begin{bmatrix} 2 & 3 \\ b & a \end{bmatrix}$ are 4 and 8, then (A) a = 10, b = 4, (B) a = 10, b = -4, (C) a = 9, b = -3, (D) a = 8, b = 5.

4. ----- are expressed in the form of inequities or equations

(A) Constraints (B) Objective Functions (C) Both A and B (D) None of these.

5. For the transportation problem

7.

9.

			\$2 \$1 \$4 \$2 \$1 \$3 \$2 \$5 \$2 5 5 10	6 7 7				
	the initial total co	st using North-West co	orner Method is	·				
	(A) 41	(B) 38	(C) 35	(D) No	one of th	nese.		
6.	Every LPP is assoc	ciated with another LP	P is called					
	(A) Primal	(B) Dual	(C) Non-linear	programming		(D) None of these.		
7.	7. If the optimal value of the objective function of a LPP with feasible region: $2x_1 + 3x_2 \le 20$, x_1 , $x_2 \ge 0$ is given by 80, then the optimal solution of the dual is							
	(A) $y_1 = 4$ $y_2 = 2$,	(B) $y_2 = 2$, (C)	$y_1 = 4,$	(D)	$y_1 = 2, y_2 = 4.$		
8.	Consider the follow s.t. $x_1 + 2x_2 \ge 4$;	ving LP model: Maxim $x_1 + 2x_2 \ge 3; x_1, x_2 \ge 3$	nize $z = -x_1 + \ge 0$; the solution	$3x_2$ to f given prob	lem is			
	(A) optimal	(B) unbounded	(C) deg	generate		(D) infeasible		
9.	A change in the ob	jective function for a r	on-basic variab	le can affect				
	(A) $z_j - c_j$ values o (C) only the $z_j - c_j$	f all non-basic variable value of that variable	es	(B) $z_j - c_j$ valu (D) none of th	ues of al lese.	l basic variables		
10). In Dichotomous M type problem	Method, let $I_{i-1} = (x_L, y_L)$	(x_R) and $f(x_1) >$	$f(x_2)$ then I_i is	is equal	to in the maximization $f(x)$		

(A) $I_i = (x_1, x_R)$ (B) $I_i = (x_1, x_2)$ (C) $I_i = (x_L, x_R)$ (D) $I_i = (x_L, x_2)$

****END of PART A****

Birla Institute of Technology & Science, Pilani First Semester 2022-2023 BITS F218: General Mathematics III End-Semester Exam (Open book) Part B

Max Marks 30

Max time: 150 mins

Date: 23-12-2022

Note:

1. Please follow all the Instructions to Candidates given on the cover page of the answer book.

- 2. All parts of a question should be answered consecutively. Each answer should start from a fresh page.
- 3. Assumptions made if any, should be stated clearly at the beginning of your answer.

Q.1 Let
$$A = \begin{bmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{bmatrix}$$
. For which values of *a*, rank of the matrix *A* is less than 3? [6]

Q.2 Find the stationary points of the $f(x_1, x_2) = -x_1^2 + x_1x_2 - x_2^2 + x_1 + 2x_2$. [3]

Q.3 Write the dual of the following LPP: Maximize $z = -x_1 - 3x_2 - 7x_3 - 5x_4$ subject to $-5x_1 + x_2 - x_3 - 4x_4 \le -10$ $-4x_1 + x_2 + 4x_4 \le -5$ $x_1 \ge 0, x_2 \ge 0, x_2 \ge 0, x_4 \ge 0$

 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$ Solve the original (primal) problem by dual simplex. [7] (Show all calculations in tabular form and header of the table should be in textbook format)

Q.4 Consider the LP problem

Minimize
$$z = x_1 - 2x_2 - x_3$$

subject to $x_1 + x_2 + x_3 \le 6$
 $x_1 - 2x_2 \le 4$
 $x_1, x_2, x_3 \ge 0$

and optimal table for the given LP is as:

BV	Ζ	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	Solution
Z	1	-3	0	-1	-2	0	- 12
x_2	0	1	1	1	1	0	6
<i>x</i> ₅	0	3	0	2	2	1	16

where x_4 , x_5 are slack variables respectively. If the new constraint $-x_2 + 2x_3 \ge 4$ is added to the given LPP, then use post optimal analysis, to find the solution of new LP problem. [5]

Q.5 Four employees are available to perform four jobs. The time (in minutes) each person to perform each job is given in the following table. Determine the assignment of the employees to jobs that minimizes the total time required to perform the four jobs.

Workers	Jobs						
	Job 1	Job 2	Job 3	Job 4			
1	16	32	18	30			
2	15	18	20	27			
3	24	26	23	28			
4	20	16	22	_			

Note: Dashes indicate person cannot do that particular job.

Q.6 Perform 2 iteration to find r_2 and X_2 using the steepest decent method for

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$

use $X_0 = (0,0)$ as initial point.

[4M]

[5M]

****END****