Birla Institute of Technology and Science, Pilani (Raj.) First Semester, 2023-24 **BITS F218 (General Mathematics III) Comprehensive Examination (Closed Book)** Max. Time: 90 Minutes Date: Dec. 13, 2023 Max. Marks: 23

Note:	Use usual notations and symbols as & when required. Write the answer in the most simplified form and sub-parts of any question should be done together.									he most
1.	Investigate for what values of λ and μ the system of linear equation									
	$x + 2y + 3z = 4, x + 3y + 4z = 5, x + 3y + \lambda z = \mu$									
	has (i) unique solution (ii) infinitely many solutions (iii) no solution.									
2.	Determine whether the given set $S = \left\{ t^2 + 1, t - 1, 2t + 2 \right\}$ is a basis for the									e vector
	space P_2 or not		U		C)		[2]
3.	Solve the follow	ving sv	vstem by	Cran	ner's 1	ule				[-]
	$-x_1+3x_2-2x_3=5$.	$4x_1 - x_2$	$x^{-3}x^{3}=-8$	$2x_{1}$	$+2x_2 - 3$	$5x_3 = 7$				[4]
4.	Find the rank of the matrix									
	$\begin{bmatrix} 1 & 3 & 4 & 3 \end{bmatrix}$									
	$A = \begin{vmatrix} 3 & 9 \end{vmatrix}$	12	9							[3]
	-1 -3	-4	-3	•						[0]
	L									
5.	Consider the fo	llowing	g LPP (F	Prima	l)					
	Max z =	$= 2x_1 + $	$4x_2 + 4x_2$	x 3 - 3	X 4					
	Subject	to		_				0		
		$x_{1} +$	$x_{2} + x_{3}$	=5	$, x_{1} +$	$-4x_{2} +$	$-x_{4} =$	9, x_1, x_2	$x_{2}, x_{3}, x_{4} \ge 0$	
	Write the dual of	of the a	bove pr	oblen	1.					[2]
6.	Solve the follow	ving L	PP by B	ig M	metho	od.				
	Subject	ze z = -	$\mathbf{x}_1 - \mathbf{x}_2$	1 1	v ₁ ⊥/1	$x_2 > 8$	V 1	$x_2 > 0$		[5]
	Subject	10 .	$\mathbf{A}_1 - \mathbf{A}_2 \geq$, т, т	AI T42	$\chi_2 \geq 0$,	A1, 2	$\mathbf{A}_2 \leq 0$		[5]
7.	Let the LPP be									
	Maximi	ze z =	$3x_1 + 2x_1$	x2+5x	3					
	and has	three c	onstrain	ts.						
	The optimal tabl	e of the	e above	LPP i	is				C - lt'	
	Basis	Z 1	X1 1	X2	X3	X4 1	X5 2	X6	Solution	
		0	-1/4	1	0	1/2		0	100	
	X3	0	3/2	0	1	0	1/2	0	230	
	110			-	-	-	-	-		

solution of the new LPP? [3]

-2

1

1

20

2

X6

0

0

0

If a new constraint $3x_1 + 3x_2 + x_3 \leq 600$ is added to the original LPP, what will be

Max. Marks: 22Max. Time: 90 MinutesDate: Dec. 13, 20231. Consider the following LPP
Min $z = 2x_1 + 3x_2$
Subject to
 $2x_1 + x_2 \ge 3$, $x_1 + x_2 = 2$, x_1 , $x_2 \ge 0$
Solve the LPP by Dual Simplex method.

2. Let the LPP be

Maximize $z = 4x_1 + 6x_2 + 2x_3$

with three constraints $x_1 + x_2 + x_3 \le 3$, $x_1 + 4x_2 + 7x_3 \le 9$, $x_1, x_2, x_3 \ge 0$. The optimal table of the above LPP is

Basis	Z	X 1	X 2	X3	S 1	S 2	Solution
Z	1	0	0	6	10/3	2/3	16
X 1	0	1	0	-1	4/3	-1/3	1
X2	0	0	1	2	-1/3	1/3	2

If right hand side of the constraints are changed from (3,9) to (9,6), what will be solution of the new LPP? [5]

3. Consider the following transportation problem and find initial basic feasible solution using Vogel's approximation method.

Demand 50 15 20 50 4. Solve the following Assignment problem for minimize the total cost:

-	M1	M2	M3	M4	M5
J1	5	5	M	2	6
J2	7	4	2	3	4
J3	9	3	5	M	3
J4	7	2	6	7	2
J5	6	5	7	9	1

Where *M* is a very large quantity.

5. Mr. George has taken Rs. 10,000 from his father to invest them in a combination of only two stock portfolios with the maximum investment allowed in either portfolio set at Rs. 75,00. The first portfolio has an average return of 10% whereas the second has 20%. In terms of risk factors associated with these portfolios, the first has a risk rating of 4 (on a scale from 0 to 10), and the second has 9. Since he wants to maximize his return, he will not accept an average rate return below 12% or a risk above 6. Hence, he then faces the important question. How much should he invest in each portfolio? Formulate the above as linear programming problem. [3]

[6]

[4]

[4]