Birla Institute of Technology and Science, Pilani (Raj.)
 First Semester, 2023-24
 BITS F218 (General Mathematics III)
 Comprehensive Examination (Closed Book)

Max. Time: 90 Minutes
Date: Dec. 13, 2023

Max. Marks: 23

Note: Use usual notations and symbols as \& when required. Write the answer in the most simplified form and sub-parts of any question should be done together.

1. Investigate for what values of λ and μ the system of linear equation

$$
x+2 y+3 z=4, x+3 y+4 z=5, x+3 y+\lambda z=\mu
$$

has (i) unique solution (ii) infinitely many solutions (iii) no solution.
[4]
2. Determine whether the given set $S=\left\{t^{2}+1, t-1,2 t+2\right\} \quad$ is a basis for the vector space P_{2} or not.
3. Solve the following system by Cramer's rule
$-x_{1}+3 x_{2}-2 x_{3}=5,4 x_{1}-x_{2}-3 x_{3}=-8,2 x_{1}+2 x_{2}-5 x_{3}=7$
4. Find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 3 & 4 & 3 \tag{4}\\
3 & 9 & 12 & 9 \\
-1 & -3 & -4 & -3
\end{array}\right]
$$

5. Consider the following LPP (Primal)
$\operatorname{Max} \mathrm{z}=2 \mathrm{x}_{1}+4 \mathrm{x}_{2}+4 \mathrm{x}_{3}-3 \mathrm{x}_{4}$
Subject to

$$
x_{1}+x_{2}+x_{3}=5, x_{1}+4 x_{2}+x_{4}=9, x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

Write the dual of the above problem.
6. Solve the following LPP by Big M method.

Minimize $\mathrm{z}=-\mathrm{x}_{1}-\mathrm{X}_{2}$
Subject to $\quad \mathrm{x}_{1}-\mathrm{X}_{2} \geq 1,4 \mathrm{x}_{1}+4 \mathrm{x}_{2} \geq 8, \quad \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
7. Let the LPP be

Maximize $\mathrm{z}=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3}$
and has three constraints.
The optimal table of the above LPP is

Basis	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	X_{6}	Solution
Z	1	4	0	0	1	2	0	1350
X_{2}	0	$-1 / 4$	1	0	$1 / 2$	$-1 / 4$	0	100
X_{3}	0	$3 / 2$	0	1	0	$1 / 2$	0	230
X 6	0	2	0	0	-2	1	1	20

If a new constraint $3 x_{1}+3 x_{2}+x_{3} \leq 600$ is added to the original LPP, what will be solution of the new LPP?

Birla Institute of Technology and Science, Pilani (Raj.)
 First Semester, 2023-24
 BITS F218 (General Mathematics III)
 Compre. Examination (Open Book)

Max. Marks: 22
Max. Time: 90 Minutes
Date: Dec. 13, 2023

1. Consider the following LPP
$\operatorname{Min} \mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}$
Subject to

$$
2 \mathrm{x}_{1}+\mathrm{x}_{2} \geq 3, \quad \mathrm{x}_{1}+\mathrm{x}_{2}=2, \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

Solve the LPP by Dual Simplex method.
2. Let the LPP be

Maximize $\mathrm{z}=4 \mathrm{x}_{1}+6 \mathrm{x}_{2}+2 \mathrm{x}_{3}$
with three constraints $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \leq 3, \mathrm{x}_{1}+4 \mathrm{x}_{2}+7 \mathrm{x}_{3} \leq 9, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$.
The optimal table of the above LPP is

Basis	z	x_{1}	x_{2}	x_{3}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	Solution
Z	1	0	0	6	$10 / 3$	$2 / 3$	16
X_{1}	0	1	0	-1	$4 / 3$	$-1 / 3$	1
X_{2}	0	0	1	2	$-1 / 3$	$1 / 3$	2

If right hand side of the constraints are changed from $(3,9)$ to $(9,6)$, what will be solution of the new LPP?
3. Consider the following transportation problem and find initial basic feasible solution using Vogel's approximation method.

	D1	D2	D3	D4	Availability
S1	5	6	1	0	60
S2	0	2	5	0	50
S3	4	1	2	100	25
mand	50	15	20	50	

[4]
4. Solve the following Assignment problem for minimize the total cost:

	M1	M2	M3	M4	M5
J1	5	5	\boldsymbol{M}	2	6
J2	7	4	2	3	4
J3	9	3	5	\boldsymbol{M}	3
J4	7	2	6	7	2
J5	6	5	7	9	1

Where \boldsymbol{M} is a very large quantity.
5. Mr. George has taken Rs. 10,000 from his father to invest them in a combination of only two stock portfolios with the maximum investment allowed in either portfolio set at Rs. 75,00 . The first portfolio has an average return of 10% whereas the second has 20%. In terms of risk factors associated with these portfolios, the first has a risk rating of 4 (on a scale from 0 to 10), and the second has 9 . Since he wants to maximize his return, he will not accept an average rate return below 12% or a risk above 6 . Hence, he then faces the important question. How much should he invest in each portfolio? Formulate the above as linear programming problem.

