BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 SECOND SEMESTER 2021-22
 BITS F316: Nonlinear Dynamics and Chaos
 Midterm test (Part B) Open Book

Total marks: 40
Time: 60 mins

1. Oscillation in equilibrium chemistry!

The following chemical sequence from a substrate to a product $S \rightarrow P$ is given by

$$
\begin{gathered}
S+X \rightarrow 2 X \\
X+Y \rightarrow 2 Y \\
Y \rightarrow P
\end{gathered}
$$

If k_{1}, k_{2} and k_{3} denote the rate constants for the three reactions respectively, the rate equations for the concentrations $x=[X], y=[Y]$ of the two intermediates X and Y are given by

$$
\begin{gathered}
\frac{d x}{d t}=\left(k_{1}[S]-k_{2} y\right) x \\
\frac{d y}{d t}=\left(k_{2} x-k_{3}\right) y
\end{gathered}
$$

(a) What are the equilibrium concentrations $\left(x_{0}, y_{0}\right)$ of $[X]$ and $[Y]$ for a fixed substrate concentration $[S]$?
(b) Discuss the stability of the fixed point and show that the concentration of the intermediates oscillate! $[2+6]$
2. Consider a 3 dimensional dynamical system

$$
\dot{x}=x+y^{4}, \quad \dot{y}=-y, \quad \dot{z}=-2 z+y^{3}
$$

(a) Is the origin $(0,0,0)$ a Hyperbolic fixed point?
(b) What is the 3×3 linearized stability matrix A ?
(c) Find the spaces E_{U} and E_{S}.
(d) What is the behaviour of the flow in the $x-y$ plane around the origin?
(e) What is the stable manifold W_{S} for this system? Is the relation between E_{S} and W_{S} for this system consistent with the stable-manifold theorem ? $[1+2+2+1+2]$
3. Consider the celebrated Lorenz system

$$
\dot{x}=\sigma(y-x), \quad \dot{y}=r x-y-x z, \quad \dot{z}=x y-b z
$$

where r, σ, b are positive constants. What can be said about the stability of the origin from linear theory and from Lyapunov theory assuming a Lyapunov function $L=\alpha x^{2}+\beta y^{2}+\gamma z^{2}$ (assume $0<r<1$). [6]
4. Consider a dynamical system which may be written using the complex variable $z=x+i y$ as

$$
\dot{z}=(z-3 i)(z+3 i)
$$

What are the fixed points and their stabilities? Draw a generic phase flow in the (x, y) plane and find the winding number for a closed contour which includes all the fixed points in its interior. [6]
5. For the following systems identify the fixed points/ limit cycles (if any) and discuss their stability
(a)

$$
\dot{x}=-y+f(r) x, \quad \dot{y}=x+f(r) y \quad \text { where } \quad r=\sqrt{x^{2}+y^{2}}
$$

(b)

$$
\dot{r}=r^{3}-3 r^{2}+2 r, \quad \dot{\theta}=1
$$

(c)

$$
\dot{\mathbf{r}}=\mathbf{r}\left(\alpha \sin \beta r^{2}\right) / r^{2}+\gamma(x \hat{j}-y \hat{i})
$$

where α, β, γ are positive constants and $\mathbf{r}=x \hat{i}-y \hat{j}$ and $r=|\mathbf{r}|$
$[4+4+4]$

