BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER 2022-23
 BITS F415: Introduction to MEMS
 Comprehensive examination (Open book) Part B

DATE: 20/12/2022 (Tuesday)
Duration: 120 min
Maximum Marks: 30
Name:
Id:
Q.1. Thermal deposition is carried out on 305 mm diameter wafer from a point source. In which $\theta \mathrm{k}=45^{\circ}$, the evaporation rate is $1 \times 10^{-3} \mathrm{gm} \mathrm{sec}^{-1}$, the distance from the source to the closest end of the wafer is 5 cm (which is used for the calculation of $\theta \mathrm{k}$), and the density of the material being deposited equal $5 \mathrm{gm} \mathrm{cm}^{-3}$. The deposition is carried out for 1 min . What is the percentage change in the thickness of the deposition from the closest to the farthest end of the wafer from the source?
[7M]
Q.2. A boule of silicon is pulled from a melt that contains 0.01% phosphorus (P) in the melt.
(a) What concentration of phosphorus (P) would you expect at the top of the boule $(x=0)$?
(b) If the boule is 1 m long and it has a uniform cross-section, at what position (or x value) would you expect the concentration of phosphorus to be twice as large as it is at the top?
(c) Now consider the melt to contain gallium as well. (Gallium is a p-type dopant for silicon, but it is not commonly used.) The concentration of gallium is such that at the top of the boule ($\mathrm{x}=\mathrm{o}$), the concentration of gallium and phosphorus are exactly equal. What is the concentration of gallium halfway down the boule ($\mathrm{x}=0.5$) that of the phosphorus? if the segregation coefficient (k) for gallium is 8×10^{-3} and the segregation coefficient (k) for phosphorus (P) is 0.35 . Assume the Carbon unit cell volume as $1.6 \times 10^{-22} \mathrm{~cm}^{3}$.
Q.3. A bimetallic cantilever beam is made of two layers of different lengths. The layer on top is made of aluminum (Material 2), whereas the layer on the bottom is made of silicon nitride (Material 1). The width of both layers is $20 \mu \mathrm{~m}$. The length of the segment between point A and B is $100 \mu \mathrm{~m}$, so is the length of the segment from point B to C. The Young's modulus of aluminum and silicon nitride are $\mathrm{E}_{2}=70 \mathrm{GPa}$ and $\mathrm{E}_{1}=250 \mathrm{GPa}$, respectively. The thickness of aluminum and silicon nitride sections is $t_{2}=0.5 \mu \mathrm{~m}$ and $\mathrm{t}_{1}=1$ $\mu \mathrm{m}$ respectively. The thermal expansion coefficients of aluminum and silicon nitride are $\alpha_{2}=25 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha_{1}=3 \mathrm{x}_{10}{ }^{-6} /{ }^{\circ} \mathrm{C}$ respectively. At room temperature, the cantilever is straight.
Find the radius of curvature (r) of the
 cantilever beam when the beam is uniformly heated to $20^{\circ} \mathrm{C}(\Delta \mathrm{T})$ above the room temperature. Determine the amount of vertical displacement at the free end of the beam under this condition.[7M]
Q.4. A uniform oxide layer of $0.4 \mu \mathrm{~m}$ thickness is selectively etched to expose the silicon surface in some locations on a wafer surface. A second oxidation at $1000^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} \mathrm{O}$ grows $0.2 \mu \mathrm{~m}$ on the bare silicon. Sketch a cross-section of the SiO_{2} in all locations on the wafer and the position of the $\mathrm{Si} / \mathrm{SiO}_{2}$ interface. (Use the chart given at the end of the paper. Assume (100) plane).
Q.5. Give the process model for fabrication of out-of-plane array of pointed micro-needles shown in Figure well supported with pictorial models and masking schemes.

Figure Array of pointed needles; channel diameter $\delta=40 \mu \mathrm{~m}$, height $h=200 \mu \mathrm{~m}$, distance between needles: $750 \mu \mathrm{~m}$, dislocation $\delta=20 \mu \mathrm{~m}$.

Rate constant describing (111) silicon oxidation kinetics at 1 atmospheric total pressure. For the corresponding values for(100) silicon, all C_{2} values should be divided by 1.68		
Ambient	$B=C_{1} \exp \left(-E_{1} / k T\right)$	$B / A=C_{2} \exp \left(-E_{2} / k T\right)$
Dry O_{2}	$\mathrm{C}_{1}=7.72 \mathrm{X}_{10}{ }^{2} \mu \mathrm{~m}^{2} \mathrm{hr}^{-1}$	$\mathrm{C}_{2}=6.23 \mathrm{X}^{\prime} 0^{6} \mu \mathrm{~m}^{2} \mathrm{hr}^{-1}$
	$\mathrm{E}=1.23 \mathrm{eV}$	$\mathrm{E}_{2}=2.0 \mathrm{eV}$
Wet O_{2}	$\mathrm{C}_{1}=2.14 \mathrm{X}_{10}{ }^{2} \mu \mathrm{~m}^{2} \mathrm{hr}^{-1}$	$\mathrm{C}_{2}=8.95 \mathrm{X}^{\prime} \mathrm{O}^{7} \mu \mathrm{~m}^{2} \mathrm{hr}^{-1}$
	$\mathrm{E}_{1}=0.71 \mathrm{eV}$	$\mathrm{E}_{2}=2.05 \mathrm{eV}$
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{1}=3.86 \mathrm{X1O}^{2} \mu \mathrm{~m}^{2} \mathrm{hr}^{-1}$	$\mathrm{C}_{2}=1.63 \mathrm{X10}^{8} \mu \mathrm{~m}^{2} \mathrm{hr}^{-1}$
	$\mathrm{E}_{1}=0.78 \mathrm{eV}$	$\mathrm{E}_{2}=2.05 \mathrm{eV}$

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER 2022-23
 BITS F415: Introduction to MEMS
 Comprehensive examination (Close book)

DATE: 20/12/2022 (Tuesday) Part A Maximum Marks: 10
Data: $\mathrm{k}=8.6173324 \mathrm{X}^{10} \mathrm{o}^{-5} \mathrm{eV} / \mathrm{K} ; \mathrm{N}_{\mathrm{A}}=6.023 \times 1 \mathrm{O}^{23} \mathrm{~mole}^{-1}$
Name: ID

1. A Czochralski crystal is pulled from a melt containing $2 \times 10^{14} \mathrm{~cm}^{-3}$ phosphorus. What will be the concentration of phosphorus at 50% of the boule length. Assuming ko $=0.32$ for phosphorus.
2. Time required for growing $2 \mu \mathrm{~m}$ of oxide on a bare silicon wafer at $900^{\circ} \mathrm{C}$ under both dry (A_{DG} $=0.235 \mu \mathrm{~m}$ and $\left.\mathrm{B}_{\mathrm{DG}}=0.0049 \mu \mathrm{~m}^{2} / \mathrm{hr}\right)$ and wet $\left(\mathrm{A}_{\mathrm{DG}}=0.5 \mu \mathrm{~m}\right.$ and $\left.\mathrm{B}_{\mathrm{DG}}=0.203 \mu \mathrm{~m}^{2} / \mathrm{hr}\right)$ conditions are (assume long time deposition)
3. For $900^{\circ} \mathrm{C}$ CVD deposition of a film, it is found that the mass transfer coefficient $\mathrm{h}_{\mathrm{G}}=10.0 \mathrm{~cm}$ sec^{-1} and the surface reaction rate coefficient $\mathrm{ks}_{\mathrm{s}}=1 \mathrm{x} 10^{7} \exp (-1.9 \mathrm{eV} / \mathrm{kT}) \mathrm{cm} \mathrm{sec}-1$. What is the regime in which CVD occurs?
4. SiO_{2} is deposited by LPCVD on a flat surface. If the sticking coefficient is equal to 0.3 , the maximum unobstructed flux is equal to $3 \mathrm{x1O}^{15}$ molecules $/ \mathrm{cm}^{2} / \mathrm{sec}$ and the density of deposited oxide film is 2.3×10^{22} molecules $/ \mathrm{cm}^{3}$. What will be the rate of deposition?
5. Metal bimorph actuator works on \qquad principle.

6.	Calculate the mean free path of a particle in the gas phase of a deposition system and estimate the number of collisions it experiences in traveling from the source to the substrate in the following case. Assume that the molecular collisional diameter is 0.4 nm , the source-to-substrate distance is 5 cm , and that the number of collisions is approximately equal to the source-tosubstrate distance divided by the mean free path. Case: An evaporation system in which the pressure is 10^{-5} torr and the temperature is $25^{\circ} \mathrm{C}$.
7.	Calculate the deposition rate for a small planar surface evaporation source in which $\theta \mathrm{i}=30^{\circ}, \theta \mathrm{k}$ $=45^{\circ}$, the evaporation rate is $1 \times 10^{-3} \mathrm{gm} \mathrm{sec}^{-1}$, the distance from the source to the wafer is 5 cm , and the density of the material being deposited equal $5 \mathrm{gm} \mathrm{cm}^{-3}$.
8.	If the anisotropy (A) of an etch process is 0.45 [$\mathrm{A}=1$-(lateral etching/vertical etching)]. What percentage of the etch rate in the vertical direction is due to the chemical component and what percentage is ionic/physical component?
9.	What will be the perimeter of sole if a 80 kg person wants to walk on water? [Surface tension of the liquid is water $(\gamma=0.072 \mathrm{~N} / \mathrm{m})$ and $\left.g=9.8 \mathrm{~ms}^{-2}\right]$.
10.	\{100\} p-type silicon wafer has a secondary flat cut at -----------------------to-----10 primary flat.

