Cryptography (BITS F463) Comprehensive Exam (2017)

There are 4 questions in all and total marks is 45. Please show all steps in computations or proofs. This is an **open book exam**. You can use books or notes (only hard copies). Calculators are allowed. Time: 180 minutes.

- 1. If an encryption function E_K is identical to the decryption function D_K , then the key K is said to be an *involutory key*.
 - (a) Prove that a permutation π in the Permutation Cipher of alphabet size m is an involutory key if and only if π(i) = j implies π(j) = i, for all i, j ∈ {1,...,m}.
 [5]
 - (b) Determine the number of involutory keys in the *Permutation Cipher* for m = 2, 3, 4, 5, and 6. [5]
- 2. Prove that if P = NP then one-way functions do not exist. [10]
- 3. Consider the following variation of the ElGamal signature scheme. Alice chooses a large prime p and a primitive root α of Z_p^* . She also chooses a function f(x) that, given an integer x with $0 \le x < p$, returns an integer f(x) with $0 \le f(x) . (For example, <math>f(x) = x^7 3x + 2 \pmod{p-1}$ for $0 \le x < p$ is one such function.) She chooses a secret integer a and computes $\beta \equiv \alpha^a \pmod{p}$. The numbers p, α, β and the function f(x) are made public.

Alice wants to sign a message m:

(1) Alice chooses a random integer k with gcd(k, p-1) = 1.

(2) She computes
$$r \equiv \alpha^k \pmod{p}$$
.

(3) She computes $s \equiv k^{-1}(m - f(r)a) \pmod{p-1}$.

The signed message is (m, r, s).

Bob verifies the signature as follows:

- (1) He computes $v_1 \equiv \beta^{f(r)} r^s \pmod{p}$.
- (2) He computes $v_2 \equiv \alpha^m \pmod{p}$.
- (3) If $v_1 \equiv v_2 \pmod{p}$, he declares the signature to be valid.
- (a) Show that if all procedures are followed correctly, then the verification equation is true. [5]
- (b) Suppose Alice is lazy and chooses the constant function satisfying f(x) = 0 for all x. Show that Eve can forge a valid signature on every message m_1 (for example, give a value of k and of r and s that will give a valid signature for the message m_1). [5]
- 4. (a) Alice and Bob are following the *Diffie Hellman Secret Key Exchange Protocol* with p = 101 (the prime number p), and g = 2 (the generator of Z_p^*). Alice sends Bob the message 14, and Bob sends Alice the message 44. Find the shared secret key between Alice and Bob showing all computations. [5]
 - (b) *n* people $A_1, A_2, ..., A_n$ want to agree on a common secret key. They publicly choose a large prime *p* and a primitive root α of Z_p^* . They privately choose random numbers $r_1, r_2, ..., r_n$ respectively. Generalize the *Diffie Hellman Secret Key Exchange Protocol* so that the *n* people can compute the common private key $K = \alpha^{r_1 r_2 ... r_n} \pmod{p}$ securely (ignore active intruder in the middle attacks) using minimum possible message exchanges (if X sends a message to Y, it is counted as one message; if X brodcasts a message, it is counted as n - 1messages). [10]