Cryptography (BITS F463) Comprehensive Exam (2017)

There are 4 questions in all and total marks is 45 . Please show all steps in computations or proofs. This is an open book exam. You can use books or notes (only hard copies). Calculators are allowed. Time: 180 minutes.

1. If an encryption function E_{K} is identical to the decryption function D_{K}, then the key K is said to be an involutory key.
(a) Prove that a permutation π in the Permutation Cipher of alphabet size m is an involutory key if and only if $\pi(i)=j$ implies $\pi(j)=i$, for all $i, j \in\{1, \ldots, m\}$. [5]
(b) Determine the number of involutory keys in the Permutation Cipher for $m=$ $2,3,4,5$, and 6 . [5]
2. Prove that if $P=N P$ then one-way functions do not exist. [10]
3. Consider the following variation of the ElGamal signature scheme. Alice chooses a large prime p and a primitive root α of Z_{p}^{*}. She also chooses a function $f(x)$ that, given an integer x with $0 \leq x<p$, returns an integer $f(x)$ with $0 \leq f(x)<p-1$. (For example, $f(x)=x^{7}-3 x+2(\bmod p-1)$ for $0 \leq x<p$ is one such function.) She chooses a secret integer a and computes $\beta \equiv \alpha^{a}(\bmod p)$. The numbers p, α, β and the function $f(x)$ are made public.
Alice wants to sign a message m :
(1) Alice chooses a random integer k with $\operatorname{gcd}(k, p-1)=1$.
(2) She computes $r \equiv \alpha^{k}(\bmod p)$.
(3) She computes $s \equiv k^{-1}(m-f(r) a)(\bmod p-1)$.

The signed message is (m, r, s).
Bob verifies the signature as follows:
(1) He computes $v_{1} \equiv \beta^{f(r)} r^{s}(\bmod p)$.
(2) He computes $v_{2} \equiv \alpha^{m}(\bmod p)$.
(3) If $v_{1} \equiv v_{2}(\bmod p)$, he declares the signature to be valid.
(a) Show that if all procedures are followed correctly, then the verification equation is true. [5]
(b) Suppose Alice is lazy and chooses the constant function satisfying $f(x)=0$ for all x. Show thet Eve can forge a valid signature on every message m_{1} (for example, give a value of k and of r and s that will give a valid signature for the message m_{1}). [5]
4. (a) Alice and Bob are following the Diffie Hellman Secret Key Exchange Protocol with $p=101$ (the prime number p), and $g=2$ (the generator of Z_{p}^{*}). Alice sends Bob the message 14, and Bob sends Alice the message 44. Find the shared secret key between Alice and Bob showing all computations. [5]
(b) n people $A_{1}, A_{2}, \ldots, A_{n}$ want to agree on a common secret key. They publicly choose a large prime p and a primitive root α of Z_{p}^{*}. They privately choose random numbers $r_{1}, r_{2}, \ldots, r_{n}$ respectively. Generalize the Diffie Hellman Secret Key Exchange Protocol so that the n people can compute the common private key $K=\alpha^{r_{1} r_{2} \ldots r_{n}}(\bmod p)$ securely (ignore active intruder in the middle attacks) using minimum possible message exchanges (if X sends a message to Y, it is counted as one message; if X brodcasts a message, it is counted as $n-1$ messages). [10]

