Cryptography (BITS F463) Mid Sem Exam (2017)

There are 3 questions in all and total marks is 35 . Please show all steps in computations or proofs. This is an open book exam. You can use books or notes (only hard copies). Time: 90 minutes.

1. Consider a special case of a Permutation Cipher. Let m, n be positive integers. Write out the plaintext, by rows, in $m \times n$ rectangles. Then form the ciphertext by taking the columns of these rectangles. For example, if $m=3, n=4$, then we would encrypt the plaintext "cryptography" by forming the following rectangle:
cryp
togr
aphy
The ciphertext would be "CTAROPYGHPRY" $[5+5=10]$
(a) Describe how Bob would decrypt a ciphertext string (given values for m and n).
(b) Decrypt the following ciphertext, which was obtained by using this method of encryption:
IRUITRTRHICITONOCOOYOAYTONHRTDTNCPGPWHDGEY
2. Consider the following DES-like encryption method. Start with a message of $2 n$ bits. Divide it into two blocks of length n (a left half and a right half): $M_{0} M_{1}$. The key K consists of k bits, for some integer k. There is a function $f(K, M)$ that takes an input of k bits and n bits and gives an output of n bits. One round of encryption starts with a pair $M_{j} M_{j+1}$. The output is the pair $M_{j+1} M_{j+2}$, where
$M_{j+2}=M_{j} \oplus f\left(K, M_{j+1}\right)$.
(\oplus means XOR, which is addition mod 2 on each bit). This is done for m rounds, so the ciphertext is $M_{m} M_{m+1}$. $[5+5+5=15]$
(a) If you have a machine that does the m-round encryption just described, how would you use the same machine to decrypt the ciphertext $M_{m} M_{m+1}$ (using the same key K)? Prove that your decryption method works.
(b) Suppose K has n bits and $f(K, M)=K \oplus M$, and suppose the encryption process consists of $m=2$ rounds. If you know only a ciphertext, can you deduce the plaintext and the key? If you know a ciphertext and the corresponding plaintext, can you deduce the key? Justify your answers.
(c) Suppose K has n bits and $f(K, M)=K \oplus M$, and suppose the encryption process consists of $m=3$ rounds. Why is this system not secure?
3. Let R be the field of real numbers, and C be the field of complex numbers. Let $R[x]$ be the ring of polynomials with real coefficients. Let $R[x] /\left(x^{2}+1\right)$ be the ring of polynomials modulo $\left(x^{2}+1\right)$, in which addition and multiplication are done modulo $\left(x^{2}+1\right)$. Let F_{1} and F_{2} be fields. A mapping $h: F_{1} \rightarrow F_{2}$ is called a homomorphism from F_{1} to F_{2} if $\forall a, b \in F_{1}$:
$h(a+b)=h(a)+h(b)$, and $h(a . b)=h(a) . h(b)$.
The operations on the left sides of the above equations are in the field F_{1}, and the operations on the right sides of the above equations are in the field F_{2}. An isomorphism is a one-to-one homomorphism. We say that F_{1} is isomorphic to F_{2} if there exists an isomorphism from F_{1} to F_{2} which is onto F_{2}. $[5+5=10]$
(a) Prove that $R[x] /\left(x^{2}+1\right)$ is a field.
(b) Prove that $R[x] /\left(x^{2}+1\right)$ is isomorphic to C.
