Cryptography (BITS F463) Mid Sem Exam (2017)

There are 3 questions in all and total marks is 35. Please show all steps in computations or proofs. This is an **open book exam**. You can use books or notes (only hard copies). Time: 90 minutes.

- 1. Consider a special case of a *Permutation Cipher*. Let m, n be positive integers. Write out the plaintext, by rows, in $m \times n$ rectangles. Then form the ciphertext by taking the columns of these rectangles. For example, if m = 3, n = 4, then we would encrypt the plaintext "cryptography" by forming the following rectangle: cryptography
 - aphy

The ciphertext would be "CTAROPYGHPRY" [5+5=10]

- (a) Describe how Bob would decrypt a ciphertext string (given values for m and n).
- (b) Decrypt the following ciphertext, which was obtained by using this method of encryption: IRUITRTRHICITONOCOOYOAYTONHRTDTNCPGPWHDGEY
- 2. Consider the following DES-like encryption method. Start with a message of 2n bits. Divide it into two blocks of length n (a left half and a right half): M_0M_1 . The key K consists of k bits, for some integer k. There is a function f(K, M) that takes an input of k bits and n bits and gives an output of n bits. One round of encryption starts with a pair M_jM_{j+1} . The output is the pair $M_{j+1}M_{j+2}$, where

 $M_{j+2} = M_j \oplus f(K, M_{j+1}).$

(\oplus means XOR, which is addition mod 2 on each bit). This is done for *m* rounds, so the ciphertext is $M_m M_{m+1}$. [5 + 5 + 5 = 15]

- (a) If you have a machine that does the *m*-round encryption just described, how would you use the same machine to decrypt the ciphertext $M_m M_{m+1}$ (using the same key K)? Prove that your decryption method works.
- (b) Suppose K has n bits and $f(K, M) = K \oplus M$, and suppose the encryption process consists of m = 2 rounds. If you know only a ciphertext, can you deduce the plaintext and the key? If you know a ciphertext and the corresponding plaintext, can you deduce the key? Justify your answers.
- (c) Suppose K has n bits and $f(K, M) = K \oplus M$, and suppose the encryption process consists of m = 3 rounds. Why is this system not secure?

3. Let R be the field of real numbers, and C be the field of complex numbers. Let R[x] be the ring of polynomials with real coefficients. Let $R[x]/(x^2+1)$ be the ring of polynomials modulo (x^2+1) , in which addition and multiplication are done modulo (x^2+1) . Let F_1 and F_2 be fields. A mapping $h: F_1 \to F_2$ is called a *homomorphism* from F_1 to F_2 if $\forall a, b \in F_1$: h(a+b) = h(a) + h(b), and h(a.b) = h(a).h(b).

The operations on the left sides of the above equations are in the field F_1 , and the operations on the right sides of the above equations are in the field F_2 . An *isomorphism* is a *one-to-one* homomorphism. We say that F_1 is isomorphic to F_2 if there exists an isomorphism from F_1 to F_2 which is *onto* F_2 . [5+5=10]

- (a) Prove that $R[x]/(x^2+1)$ is a field.
- (b) Prove that $R[x]/(x^2+1)$ is isomorphic to C.