Cryptography (BITS F463) Comprehensive Exam (2022)

There are 5 questions in all and total marks are $5+(5+5)+10+10+10=45$. Please show all steps in proofs or computations (using efficient algorithms). Calculators are allowed. This is an open book exam. You can use books or notes (only hard copies). Time: 180 minutes.

1. Caesar wants to arrange a secret meeting with Marc Anthony, either at the Tiber (the river) or at the Coliseum (the arena). He sends the ciphertext

EVIRE.

However, Anthony does not know the key, so he tries all possibilities. Where will he meet Caesar?
2. Suppose E and F are two encryption methods. Let K_{1} and K_{2} be keys and consider the double encryption

$$
G_{K_{1}, K_{2}}(m)=E_{K_{1}}\left(F_{K_{2}}(m)\right) .
$$

(a) Suppose you know a plaintext-ciphertext pair. Show how to perform a meet-in-the-middle attack on this double encryption.
(b) An Affine Encryption given by $x \rightarrow \alpha x+\beta(\bmod 26)$ can be regarded as a double encryption, where one encryption is multiplying the plaintext by α and the other is a shift by β. Assume that you have a plaintext and ciphertext that are long enough that α and β are unique. Show that the meet-in-the-middle attack from part (a) takes at most 38 steps (not including the comparisons between the lists)
3. Consider the ElGamal Digital Signature Scheme. The public key is (y, p, g), where $y \equiv g^{x}(\bmod p), p$ is a prime, and g is a generator for \mathbb{Z}_{p}^{*}. The secret key is x such that $y \equiv g^{x}(\bmod p)$. The signature of message m is a pair (r, s) such that $0 \neq r, s \neq p-1$ and $g^{m} \equiv y^{r} r^{s}(\bmod p)$. We choose a random number k such that $0 \neq k \neq p-1$ and $\operatorname{gcd}(\mathrm{k}, \mathrm{p}-1)=1$ and set $r=g^{k}(\bmod p)$.
Alice wants to sign a document using the ElGamal signature scheme. Suppose her random number generator is broken, so she uses $k=x$ in the signature scheme. How will Eve notice this and how can Eve determine the values of k and x and thus break the system?
4. Allice and Bob are following the Elliptic Curve Diffie-Hellman protocol using the elliptic curve $y^{2} \equiv x^{3}+9 x+17(\bmod 23)$. The base point is $(16,5)$, Alice's public key is $(12,17)$, and Bob's public key is $(8,7)$. Compute the shared secret between Alice and Bob.
5. Using Shamir's $(4,8)$ secret sharing scheme with the parameter $p=29$, we get

$$
D_{1}=14, D_{3}=15, D_{6}=25, D_{4}=8 .
$$

Find the shared secret D, the remaining pieces $D_{2}, D_{4}, D_{5}, D_{7}$, and the polynomial $q(x)$.

