Cryptography (BITS F463) Midsem Exam (2022)

There are 4 questions in all and total marks are 5 + 10 + 10 + 10 = 35. Please show all steps in proofs or computations (using efficient algorithms). Calculators are allowed. This is an **open book exam**. You can use books or notes (only hard copies). Time: 90 minutes.

Notation: \bar{x} is the bitwise complement of the string x; and $x \oplus y$ is the bitwise exclusive or of the binary strings x and y.

1. Using the Vigenere cipher, encrypt the plaintext "adversary" using the keyword "rsa".

- 2. Consider the DES key K = 0x010101010101010101. Using the DES Key Schedule Algorithm, compute C_0, D_0, C_1, D_1 , and K_1 in hexadecimal notation.
- 3. Consider the RSA encryption function $\text{RSA}_e : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ defined by

$$\operatorname{RSA}_e(x) = x^e \pmod{n}.$$

Prove that $\exists l \in \mathbb{N}$ such that $\mathrm{RSA}^l = \mathrm{id}_{\mathbb{Z}_n^*}$, where RSA^l is the function in which we apply the RSA function l times, and $\mathrm{id}_{\mathbb{Z}_n^*}$ is the identity function over \mathbb{Z}_n^* .

4. Let $E : \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^L$ be a secure Pseudo Random Function (PRF) family. Consider the family of functions $G : \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^L$ defined for all $(K,x) \in \{0,1\}^k \times \{0,1\}^l$ by

$$G_K(x) = F_K(x) \oplus F_K(\bar{x})$$

Prove that G is not a secure PRF family.