Cryptography (BITS F463) Midsem Exam (2022)

There are 4 questions in all and total marks are $5+10+10+10=35$. Please show all steps in proofs or computations (using efficient algorithms). Calculators are allowed. This is an open book exam. You can use books or notes (only hard copies). Time: 90 minutes.
Notation: \bar{x} is the bitwise complement of the string x; and $x \oplus y$ is the bitwise exclusive or of the binary strings x and y.

1. Using the Vigenere cipher, encrypt the plaintext "adversary" using the keyword "rsa".
2. Consider the DES key $K=0 x 0101010101010101$. Using the DES Key Schedule Algorithm, compute $C_{0}, D_{0}, C_{1}, D_{1}$, and K_{1} in hexadecimal notation.
3. Consider the RSA encryption function $\operatorname{RSA}_{e}: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{Z}_{n}^{*}$ defined by

$$
\operatorname{RSA}_{e}(x)=x^{e}(\bmod n) .
$$

Prove that $\exists l \in \mathbb{N}$ such that $\mathrm{RSA}^{l}=\mathrm{id}_{\mathbb{Z}_{n}^{*}}$, where RSA^{l} is the function in which we apply the RSA function l times, and $\mathrm{id}_{\mathbb{Z}_{n}^{*}}$ is the identity function over \mathbb{Z}_{n}^{*}.
4. Let $E:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}^{L}$ be a secure Pseudo Random Function (PRF) family. Consider the family of functions $G:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow$ $\{0,1\}^{L}$ defined for all $(K, x) \in\{0,1\}^{k} \times\{0,1\}^{l}$ by

$$
G_{K}(x)=F_{K}(x) \oplus F_{K}(\bar{x})
$$

Prove that G is not a secure PRF family.

