Cryptography (BITS F463) Midsem Exam (2023)

There are 3 questions in all and total marks are 10+(2+3+5)+(5+5) = 30. Please show all steps in proofs or computations (using efficient algorithms). Calculators are allowed. This is a **closed book exam**. Time: 90 minutes.

1. Mr. James Bond was presented with an intercept: KCJAA IJNLD ERLRA YDEFA HTOER LLKSI 10 001 101 0 000

Along with the above short ciphertext the intelligence agencies also provided the following background information on it:

• It is confirmed that the sender and the receiver have neither met each other nor communicated by other means for a long time. Thus it is very unlikely that they have a shared key with them which they are using for communication.

• Both the sender and the receiver have immense knowledge about old communication / encryption technologies. Sleuths confirm that among other things the sender was recently consulting books on Morse codes in the local library.

Help Mr. Bond cryptanalyze the intercept.

Morse Code:							
Α		Ν				1	
В		0		,		2	
C		Ρ		1		3	
D		Q				4	
Е		R		1.1		5	
F		S		1		6	
G		Т	-	?		7	
Н		U		0		8	
I		V		-		9	
J		W		;		Θ	
K		Х		(
L		Y)			
M		Ζ		=			

- 2. Using the notation used in the AES algorithm, and the $GF(2^8)$ used in the AES algorithm $(\mathbb{Z}_2[x]/(x^8 + x^4 + x^3 + x + 1))$, compute the following:
 - (a) $\{DC\} \oplus \{DA\}.$
 - (b) $\{CD\} \bullet \{BC\}$.
 - (c) $\{AB\}^{-1}$.

3. The RSA cryptosystem is insecure when its public key (e, n) has e = 3.

- (a) Design a polynomial-time algorithm to recover the plaintext m, when you are given the ciphertexts $c_1 = \text{RSA}_{(3,n)}(m)$ and $c_2 = \text{RSA}_{(3,n)}(m+1)$.
- (b) Using the above polynomial-time algorithm, find m if $c_1 = 3728$, $c_2 = 5078$, and n = 8633.