Cryptography (BITS F463) Midsem Exam (2023)

There are 3 questions in all and total marks are $10+(2+3+5)+(5+5)=30$. Please show all steps in proofs or computations (using efficient algorithms). Calculators are allowed. This is a closed book exam. Time: 90 minutes.

1. Mr. James Bond was presented with an intercept:

KCJAA IJNLD ERLRA YDEFA HTOER LLKSI
100011010000
Along with the above short ciphertext the intelligence agencies also provided the following background information on it:

- It is confirmed that the sender and the receiver have neither met each other nor communicated by other means for a long time. Thus it is very unlikely that they have a shared key with them which they are using for communication.
- Both the sender and the receiver have immense knowledge about old communication / encryption technologies. Sleuths confirm that among other things the sender was recently consulting books on Morse codes in the local library.

Help Mr. Bond cryptanalyze the intercept.

2. Using the notation used in the AES algorithm, and the $\operatorname{GF}\left(2^{8}\right)$ used in the AES algorithm $\left(\mathbb{Z}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right)\right)$, compute the following:
(a) $\{D C\} \oplus\{D A\}$.
(b) $\{C D\} \bullet\{B C\}$.
(c) $\{A B\}^{-1}$.
3. The RSA cryptosystem is insecure when its public key (e, n) has $e=3$.
(a) Design a polynomial-time algorithm to recover the plaintext m, when you are given the ciphertexts $c_{1}=\operatorname{RSA}_{(3, n)}(m)$ and $c_{2}=\operatorname{RSA}_{(3, n)}(m+1)$.
(b) Using the above polynomial-time algorithm, find m if $c_{1}=3728, c_{2}=$ 5078 , and $n=8633$.

