BIRLA INSTITUTE OF TECHONOLOGY AND SCIENCE, PILANI Second Semester (2022-2023), Midsemester Examination Course: Analysis of Structures (CE F241)

Q. 1 In the portal frame shown in Fig.1, find the reactions in the hinge supports A and D, find the internal forces at joint B and at joint C, where joint B is a hinge joint and joint C is a rigid joint. Also, Find the internal forces at center of member BC.

Fig. 1
Q. 2 Draw the Influence Line Diagrams (ILDs) for Reaction at C and B.M. at B in the beam shown in Fig.2, finding equation of the Influence Lines in segments $A C$ and $C D$ for reaction at C and segments AB, BC and CD for $\mathrm{B} . \mathrm{M}$. at B , considering A as the origin. Using these ILDs find the reaction at C and B.M. at B if a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ occupies the overhang portion CD.

Fig. 2
Q. 3 In the beam shown in the Fig.3, find the S.F. and B.M. functions in all three segments (AB, BC and $C D$), considering point A as the origin. Draw the S.F.D. and B.M.D. mentioning the magnitudes. Find the maximum bending moment and its location in the beam.

Fig. 3
Q. 4 Find the equation of the of the elastic curve (i.e. equation of deflection) of the beam shown in Fig. 4 by double integration method. The beam is subjected to a linearly varying load as shown in the figure. Find the maximum deflection and its location.

Fig. 4
Q. 5 In the truss shown in Fig.5, find the forces in the members CD, DJ, DI and HI, using method of sections.

Fig. 5

