BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
 II SEMESTER 2017-2018
 Water and Wastewater Treatment Dated: 11.5.2018
 Comprehensive Examination (Closed Book)

CE F342
Max. Marks: 120
Duration: 180 minutes

Answer all questions.
 Answer all parts of a question together.

1. Explain the following with appropriate sketches wherever necessary:
a) Oxidation ditch
b) Sludge volume index
c) Anaerobic digester
d) Skimming tank
e) Chlorine demand
2. Design a grit chamber having a rectangular cross section and a proportional flow weir as the velocity control device, for the following data :
a) Maximum flow $=30 \mathrm{mld}$
b) Diameter of grit particles to be removed $=0.2 \mathrm{~mm}$
c) Average temperature $=20^{\circ} \mathrm{C}$
d) Specific gravity of grit particle $=2.6$
e) Depth of chamber $=1.1 \mathrm{~m}$
f) $\mathrm{a}=0.035 \mathrm{~m}, \mathrm{C}=0.6$
g) Use Hazen's modified equation for calculation of settling velocity
h) Shield equation coefficient $=4$
i) Find the value of x coordinate of flow weir for y values vary from $0,0.01,0.02,0.03$, $0.04,0.05$ and 0.1 m respectively.
$(10+15=25)$
3. Three million litres of water per day is passing through a Sedimentation Tank which is 7 m wide , 15 m long and having a water depth of 3 m , find the following:
a) Detention time for the tank
b) Flow through velocity from the tank
c) If 50 ppm is the concentration of suspended solids present in turbid water, how much dry solid will be settled in the tank?, assume 75% removal in the basin and specific gravity of particle 2.1.
d) Over flow rate
4. Design a conventional Activated Sludge Plant for the following data :
a) Population $=100000$
b) Per capita sewage contribution $=150 \mathrm{lpcd}$
c) Inlet $\mathrm{BOD}=220 \mathrm{mg} / 1$
d) Effluent $\mathrm{BOD}=20 \mathrm{mg} / \mathrm{l}$
e) F / M ratio $=0.2 \mathrm{day}^{-1}$
f) $\mathrm{MLSS}=3000 \mathrm{mg} / 1$
g) $\mathrm{SVI}=100 \mathrm{ml} / \mathrm{g}$
h) Oxygen transfer rate of aerator $=1.4 \mathrm{~kg} / \mathrm{HP} /$ hour

Find efficiency of the plant, Volume of aeration tank, Hydraulic retention time, Volumetric loading, Return sludge ratio , Total horse power of aerators.
$(3+5+3+3+3+3=20)$
5. Design a high rate Trickling filter plant to treat domestic sewage with a BOD of $180 \mathrm{mg} / \mathrm{l}$ for an average flow of 40 mld . The desired BOD of effluent is $10 \mathrm{mg} /$ l. Given the following data:
a) BOD loading of 0.8 kg BOD applied $/ \mathrm{m}^{3} /$ day excluding recirculation on first stage filter.
b) Recirculation ratio of first stage filter $=2$
c) Recirculation ratio of second stage filter $=1$

Find Volume of first stage filter and second stage filter; Efficiency of first stage filter and second stage filter.
Note: Use NRC equation
$(2+6+6+6=20)$
6. A 350 mm diameter sewer is to flow at 0.35 m depth on a grade ensuring a degree of self cleansing equivalent to that obtained at full depth at a velocity of $0.8 \mathrm{~m} / \mathrm{s}$, find
a) The required grade
b) Associated velocity
c) The rate of discharge at this depth Given:
a) Manning's rugosity coefficient $=0.014$
b) Proportionate area $=0.315$
c) Proportionate $\mathrm{HMD}(\mathrm{r} / \mathrm{R})=0.7705$
d) $\mathrm{N}=\mathrm{n}$

Note: Use Manning's Equation
7. Find the area of paddle of a flocculator for the following data:
a) Speed of paddle $=5 \mathrm{rpm}$
b) Velocity ratio $\mathrm{k}=0.25$
c) Coefficient of drag of paddle $=1.8$
d) $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$
e) Average value of $\mathrm{G}=50 \mathrm{~s}^{-1}$
f) Volume of Tank $=120 \mathrm{~m}^{3}$
g) $\mu=1.0087 \times 10^{-3} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$
h) $\mathrm{r}=0.7 \mathrm{~m}$

Paper Ends

