BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE II SEMESTER 2017-2018
 CE F342
 Water and Wastewater Treatment Dated: 9.3.2018 Mid Semester Test (Open Book)

Max. Marks: 90
Duration: 90 minutes

Note: Only class notes are allowed, No Xerox material is allowed.

1. Primary settling tank of 25 m diameter with 2.2 m side water depth has a weir located on the periphery. For a water flow of $12000 \mathrm{~m}^{3} /$ day , calculate:
a) Surface area and volume
b) Overflow rate
c) Detention time
d) Weir loading
e) Sketch of settling tank
[Take slope of hopper zone of settling tank as $1 \mathrm{~V}: 12 \mathrm{H}$, allowable weir loading $=125$ $\mathrm{m}^{3} / \mathrm{d} / \mathrm{m}$]
$[3+3+3+7+4]$
2. Water is pumped from a low level reservoir to a high level reservoir through a reservoir to a high level through a main pipeline of 0.4 m diameter and 1200 m length. The pump is located at the low level reservoir. At a point along the main line at a distance of 450 m from the high level reservoir, a branch of 0.3 m diameter and 350 m length takes off to discharge $190 \mathrm{l} / \mathrm{s}$ in to the atmosphere. Given the following data:
a) Level of water in high level reservoir $=+40.0 \mathrm{~m}$
b) Level of water in the open end of the 0.3 m diameter branch line $=+34.5 \mathrm{~m}$
c) Level of ware in low level reservoir $=+29.0 \mathrm{~m}$
d) Darcy's frictional coefficient for both pipes $=0.03$

Determine the flow rate in to the high level reservoir and the theoretical H.P. of the pump, assuming the delivery valve of the pump to be at +32 m .
3. A Flocculation chamber 30 m long, 12 m wide and 4.5 m deep is to treat 70 MLD of water. It is equipped with 12 m long, 0.3 m wide paddles supported parallel to width and moved by four horizontal shafts which rotate at a speed of 2.5 rpm . The centre line of paddles is 1.8 m from the shaft which is at mid depth of tank. Two paddles are mounted on each shaft, one opposite to another. If the mean velocity of water is $1 / 4^{\text {th }}$ velocity of paddles, find
a) Power consumption
b) Time of flocculation
c) Value of G
d) Sketch of flocculation unit and paddles

Take kinematic viscosity of water $=1.31 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \mathrm{C}_{\mathrm{D}}=1.8$
4. Compute the population of year 2010 and 2018 for a city whose population in the year 1930 was 30,000 and in the year 1970 was 48000 . Make use of geometrical growth method.
5. Explain the following with suitable sketches wherever necessary
[$4 \times 5=20]$
a) If you have to make a choice between Slow Sand Filter and Rapid Sand Filter, which one you will prefer and why?
b) What to you understand by non consumptive usage of water, explain.
c) Make the sketches of different types of Screens and explain.
d) We have visited the sewage Treatment Plant of BITS Pilani, explain the process of the plant.

Paper ends

