BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJ.)

Duration: 90mts

CE F417 **Application of Artificial Intelligence in Civil engineering**

Date:12.10.2017 Mid Semester Examination MM: 100

0.1 A flat plate which is covered with both laminar and turbulent boundary layer, the average drag coefficient C_f is calculated

 $C_f = \frac{0.074}{Re_L^{1/5}} - \frac{A}{Re_L}$ as follows:

Formula is valid for the values of Re_L ranges from $5x10^5$ to 10^7 . The constant A depends the value of the Reynolds number Rex at which the laminar boundary layer becomes turbulent. The values of A for various values of critical Reynolds number are given below

Critical (Re) _x	3x10 ⁵	5x10 ⁵	106	3x10 ⁶
Constant A	1050	1700	3300	8700

- a. Choose a proper ANN architecture. Justify it
- b. Create max. possible training data points with the help of data given.
- c. Calculate the values of weightages (min. 3 Epooch)
- d. Calculate the value of constant A for critical $Re_x = 9x10^5$
- Q.2 (a) For a network, prepare a rule based Expert system to calculate the Total floats.
- (b) For the given network, prepare the rules to calculate the Total Floats for each activity.

Activity	Duration	Activity	Duration
1-2	6	4-3	5
1-3	8	2-5	12
1-4	5	3-5	8
2-3	0	4-5	6

- c. Get the total float of activity 2-3; Use backchaining, show all the changes in dynamic memory, rule stack, and goal stack
- i. Write all the notations you shall be using to define the system
- ii. Write all the rules clearly
- Q.3. Choose the best alternative
- 1. From which rule does the modus ponens are derived?
- a) Inference rule b) Module rule
- c) Both a & b
- d) None of these
- 2. What is the goal of artificial intelligence?
- To solve real-world problems (a)
- To solve artificial problems (b)
- To explain various sorts of intelligence(d) To extract scientific causes (c)
- 3. What are you predicating by the logic: $\forall x : \forall y : loyalto(x, y)$.
- (a) Everyone is loval to someone
- (b) Everyone is loyal to all
- (c) Everyone is not loyal to someone
- (d) Everyone is loyal
- 4. Which is not a type of First Order Logic (FOL) Sentence?

- (a) Atomic sentences (b) Complex sentences (c) Quantified sentence (d) Quality Sentence
- 5. Which search method takes less memory?
- (a) Depth-First Search (b) Breadth-First search (c) Both (a) and (b)

- (d) Linear Search.

6. Which is not the com	monly used programming	language for AI?				
(a) PROLOG (b) Ja	ava (c) LISP	(d) Perl				
7. How do you represen	nt "All dogs have tails".					
(a) Vx: dog(x)→hastail(c) Vx: dog(y)→hastail		x)→hastail(y) g(x)→has→tail(x)				
8. In an Unsupervised le	earning					
(a) Specific output value(c) No specific Inputs a		(b) Specific output values are not given(d) Both inputs and outputs are given				
9. Forward chaining sys	stems are, w	here as backward	chaining systems are			
a) Goal-driven, goal-dri	ven	b) Goal-driven, data-driven				
c) Data-driven, goal-dri	ven	d) Data-driven, data-driven				
10. The main componer	nts of the expert systems i	s/are,				
a) Inference Engine	b) Knowledge Base	c) Only a)	d) Both a) & b)			
11. Following are the el	ements, which constitutes	s to the frame stru	acture.			
a) Facts or Data		and default values				
c) Frame names	d) (a) and (b)					
12. A 3-input neuron is trained to output a zero when the input is 110 and a one when the input is 111. After generalization, the output will be zero when and only when the input is:						
a) 000 or 110 or 011 or 101		b) 010 or 100 or 110 or 101				
c) 000 or 010 or 110 or 100		d) 100 or 111 or 101 or 001				
13. A perceptron is:						
	rward neural network wit	h pre-processing	b) an auto-associative neural network			
	ssociative neural network		d) a neural network that contains feedback			
14. What are the advant	tages of neural networks o	over conventional	computers?			
(i) They have the ability			ore fault tolerant			
	ed for real time operation	_	_			
a) (i) and (ii) are true	b) (i) and (iii) are true	c) Only (i)	d) All of the mentioned			
	blem exceptionally interes	_				
a) Because it can be expressed in a way that allows you to use a neural network						
b) Because it is complex binary operation that cannot be solved using neural networks						
c) Because it can be solved by a single layer perceptron						
d) Because it is the simp	plest linearly inseparable	problem that exis	ts.			
16. Neural Networks are complex with many parameters. a) Linear Functions b) Nonlinear Functions c) Discrete Functions d) Exponential Functions						
a) Linear Functions	b) Nonlinear Functions	c) Discrete Fund	ctions d) Exponential Functions			