BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 Department of Civil Engineering
 Second Semester 2022-23
 CE F435: Introduction to FEM
 Mid-Sem Exam

Q5. A tapered bar of square section of length 200 mm is fixed at roof. The section of bar at roof level is $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ and at free end it is $10 \mathrm{~mm} \times 10 \mathrm{~mm}$. The bar is subjected to a force of $10,000 \mathrm{~N}$ at free end. Using the Finite Element method, determine the axial displacement at the (i) free end, and (2) mid-point (i.e. mid-length of bar). Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $v=$ 0.2 .

Q6. Write the interpolation functions for the four-node bar element using the Lagrange interpolation function. Show that the Lagrange interpolation functions written above may be considered shape functions for the element.

Q7.For a 3-node triangular element the displacements at nodes are $u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}$. Derive the strain-displacement matrix for this element.

Q8.For a triangular plate element shown in the Figure [nodal coordinates (6,4); $(6,8) ;(2,6)$ and, plate thickness $=0.1$ m], determine the load vector due to variable distributed load as shown in Figure.

Note: For the 3-node triangular element, the shape function for $i^{\text {th }}$ node may be taken as

$$
N_{i}=(1 / 2 \Delta)\left[a_{i}+b_{i} x+c_{i} y\right]
$$

Where, $\Delta=$ Area of Triangle, $a_{1}=\left(x_{2} y_{3}-y_{2} x_{3}\right) ; a_{2}=\left(x_{3} y_{1}-y_{3} x_{1}\right) ; a_{3}=\left(x_{1} y_{2}-y_{1} x_{2}\right)$

$$
\begin{array}{lll}
b_{1}=\left(y_{2}-y_{3}\right) ; & b_{2}=\left(y_{3}-y_{1}\right) ; & b_{3}=\left(y_{1}-y_{2}\right) \\
c_{1}=\left(x_{3}-x_{2}\right) ; & c_{2}=\left(x_{1}-x_{3}\right) ; & c_{3}=\left(x_{2}-x_{1}\right)
\end{array}
$$

