Birla Institute of Technology & Science, Pilani- Pilani Campus Second Semester 2022-2023

Comprehensive Exam

Course No: CE G518 Course Title: Pav. Ana. Design
Nature of Exam: Closed Book Max. Marks: 85 (Weightage: 35%)

Duration: 180 Min Date of Exam: 17/05/2023

Note:

1. All questions are compulsory.

2. Assume the date from relevant code if required.

3. Figures to the right indicate full marks.

Q. 1 A cement concrete pavement is to be designed for a four-lane divided national highway with two lanes in each direction in the state of Karnataka. Design the pavement for a period of 30 years. Lane width = 3.5 m; transverse joint spacing = 4.5 m. It is expected that the road will carry, in the year of completion of construction, about 5000 commercial vehicles per day in each direction. The proportion of traffic in predominant direction is 50%. Axle load survey of commercial vehicles indicated that the percentages of front single (steering) axle, rear single axle, rear tandem axle and rear tridem axle are 40%, 25%, 15% and 20% respectively. The percentage of commercial vehicles with spacing between the front axle and the first rear axle less than 4.5 m is 60%. Traffic count indicates that 65% of the commercial vehicles travel during night hours (6 PM to 6 AM). Details of axle load spectrum of rear single, tandem and tridem axles are given in Table 1. The average number of axles per commercial vehicle is 2.30. Subgrade CBR is 8%. Estimate the safe thickness of PQC layer using IRC 58:2015 method for debonded concrete pavement with tied concrete shoulder with doweled transverse joints. The thickness of granular subbase and DLC layer are 225 mm and 150 mm, respectively. [45]

Table 1: Axle load spectrum data

Single Axle		Tandem Axle		Tridem Axle							
Axle load	Frequency (%	Axle load	Frequency (%	Axle load	Frequency (%						
class (kN)	of single	class (kN)	of tandem	class (kN)	of tridem						
	axles)		axles)		axles)						
185-195	26	380-400	40	530-560	25						
175-185	29	360-380	40	500-530	20						
165-175	25	340-360	10	470-500	25						
155-165	20	320-340	10	440-470	30						
	100		100		100						

Q. 2 The deflection values measured for a road section are given in the Table 2. The other data measured during the collection of deflection data is mentioned below.

Pavement temperature: 40°C Sub-grade gravelly soil with PI>15

Moisture Content: 07% Annual rainfall: 1500 mm Existing traffic: 8000 cvpd Design period: 10 years Traffic growth rate: 7%

VDF: 4.2

Dual carriageway with dual 5 lane carriageway

Table 2: Deflection Data								
Sr. No.	D_{o}	D_{i}	D_{f}					
1	100	80	75					
2	100	61	60					
3	100	88	84					
4	100	56	53					
5	100	74	71					
6	100	89	86					
7	100	71	67					
8	100	73	71					
9	100	59	57					
10	100	73	67					

Design the overlay for the pavement which is on a national highway. [20]

Q. 3 A 4 lane interstate pavement with doweled joints and concrete shoulders, has 7 inch thick cement treated subbase on subgrade with k = 150 pci, MR of concrete = 650 pci and expected load repetitions are given in Table 3. Assume trial thickness of 12 inch. Take LSF = 1.2. Estimate whether the 12 inch thickness of PQC layer is adequate by using PCC method. [20]

Table 3: Expected load repetitions

Table 5. Expected four repetitions										
Single axle load (kip)	Frequency ((no. of	Tandem axle load (kip)	Frequency	(no.	of				
	repetitions)			repetitions)						
36	7000		70	30000						
32	14000		65	55000						
28	32000		60	80000						
24	65000		55	3000000						
20	125000		50	4000000						
16	250000	·	45	2000000						