Birla Institute of Technology & Science, Pilani, Pilani Campus

Comprehensive Examination - 2023 - 24

Transportation Systems Planning and Management (CE G523)

Total marks: 70 (Closed book)

Time: 3 Hours

1) Choose the correct option(s) for the following questions. (For each wrong answer negative 0.5 mark will be given.)

 $(1 \times 5 = 5 \text{ Marks})$

- a) University employment is an example of population serving industry. (True/False)
- b) Accessibility ratio is associated with trip interchange modal split model. (True/False)
- c) Which is/are the factor(s) influencing mode choice?
 - i. Level of service
 - ii. Socio-economic characteristics
 - iii. Nature of trip
 - iv. Trip length
- d) Drawing conclusions from the observed decision of people in land use under different conditions is
 - i. Stated preference
 - ii. Revealed preference
 - iii. Both (i) and (ii)
 - iv. None of these
- e) In nested logit model the sub-modes are said to be perfect substitutes of each other when
 - i. $\theta = 0.5$
 - ii. $\theta = 0.25$
 - iii. $\theta = 0$
 - iv. $\theta = 1$
- 2) Answer the following questions.
 - a) Why is it essential to segregate the captive travellers from choice travellers in modal split analysis?
 - b) Write down the principles to code the nodes and links in traffic assignment network.
 - c) Derive the expression for singly constrained gravity model.
 - d) Show the sequence of activities in transport analysis.
- **3)** Answer the following questions.
 - a) Describe the basic properties accounted in Lowry model for land use allocation.
 - b) Draw the graphical method developed in Milwaukee region to show the percentage transit usage for a zone with 10% accessibility ratio and 1 car per household. Also show the condition for a zone without any transit usage.
 - c) Describe user equilibrium, system equilibrium and stochastic equilibrium of route choice behaviour.
 - d) What is the basic hypothesis or assumption behind the trip-interchange modal split model? Describe the expressions considered in this to understand the relative competitiveness of public transport system and personal vehicle.
- 4) An estimation procedure for a mode choice model of the nested logit structure (**Public transport:** Bus (B) and Rail (R); **Private Car** (A)) is given by the relationship: $V_T = a_T + \theta \times \text{Logsum}$, where $a_T = -0.41$ and $\theta = 0.2$. For a particular zonal interchange, following modal utilities are calculated in accordance with the nested logit model: $V_A = -0.41$, $V_B = -1.05$ and $V_R = -0.95$. Calculate: (a) the corresponding mode shares and (b) the effect of a policy that is expected to cause a change $\Delta V_B = -0.30$. (8 Marks)

(2.5 \times 4 = 10 Marks)

 $(4 \times 4 = 16 \text{ Marks})$

Using the network described by the accompanying link table (Table 5), find and sketch the minimum path tree emanating from node 1.
(15 Marks)

i	1	2	2	3	4	4	4	5	5	5	6	6	6	7	7	8	8	8
j	4	5	6	8	1	5	8	2	4	6	2	5	7	6	8	3	4	7
W _{ij}	2	4	3	5	2	6	10	4	6	4	3	4	9	9	7	5	10	7

- Table 5: Link table
- 6) Trip matrix and travel time matrix are given for three zones. Travel time impedance function can be assumed to be $1/d_{ij}^2$. Show two iterations of doubly constrained gravity model. (8 Marks)

Table 6.1: Travel time matrix								
Travel time	1	2	3					
1	-	5	3					
2	6	-	5					
3	4	3	3					

Table 6.2: Trip matrix										
Trips	1	2	3	Pi						
1	0	700	2100	2800						
2	1500	0	2700	4200						
3	300	2500	0	2800						
Aj	1800	3200	4800	9800						

Table 6.2: Trip matrix

Formulae to be used: $T_{ij} = R_i C_j P_i A_j F_{ij}$; $R_i = \frac{1}{\sum_{j=1}^n C_j A_j F_{ij}}$; $C_j = \frac{1}{\sum_{i=1}^n R_i P_i F_{ij}}$

7) Consider an urban area involving four traffic zones with the following details: Total employment vector (e) = $[126 \ 177 \ 64 \ 216]$ Basic employment vector (e_b) = $[100 \ 150 \ 40 \ 200]$

0.35 0.30 0.20 0.15 Journey to home function $(\mathbf{a}'_{ij}) = \begin{bmatrix} 0.25 & 0.35 & 0.20 & 0.20 \\ 0.15 & 0.10 & 0.35 & 0.40 \end{bmatrix}$ 0.10 0.25 0.20 0.45 0.50 0.25 0.10 0.15 $\begin{array}{cccccccc} 0.30 & 0.45 & 0.15 & 0.10 \\ 0.15 & 0.20 & 0.40 & 0.25 \end{array}$ Journey to shop (\mathbf{b}'_{ii}) = L0.20 0.25 0.35 0.20J $[0.5 \ 0 \ 0 \ 0]$ $\begin{array}{cccccc} 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \end{array}$ Labour population rate (a_i) (households/employee) = 0 0 0 0.5 $[0.1 \ 0 \ 0 \ 0]$ 0 0.1 0 0 Service employment ratio (**b**_i) (households/service employment) = 0 0 0.1 0 0 0 0 0.1Check if the co-distribution of employment and households are in equilibrium.

(8 Marks)

-----All the Best------