BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI CE -G534 PAVEMENT MATERIAL CHARACTERIZATION SEMESTER I, 2022-23 COMPREHENSIVE EXAMINATION (OPEN BOOK*)

Date: 24-12-2022

Time: 180 minutes Max. Marks: 70

INSTRUCTIONS:

- Q1. You are working as a design consultant in company X. Your client C approaches you to verify the design mix that C's contractor prepared for the construction of a low volume rigid pavement, with surface course of 200 mm thickness. The rigid pavement is also abutting a bridge. The data provided by the client are given in **Table 1**. With the percentage of superplasticizer recommended by the contractor, the desired slump of 30 ± 10 mm was not achieved. Hence you increased the percentage of superplasticizer to 1.2% of cementitious materials. It was requested by the client that the mix should be sustainable for which 32% of Ground Granulated Blast Furnace Slag (GGBFS) was used as a partial replacement of cement, by mass. At the same time, Client C wants to utilize a non-sag type silicone sealant in the transverse and longitudinal joints. Prepare the detailed design report addressing the following:
 - (i) What is the grading zone of fine aggregates used for the mix design 2 Marks as per IRC: 44 2017? Provide detailed steps and reasons (in tabular form) for identification.
 - (ii) What is the Nominal Maximum Aggregate Size (NMAS) of the *1 Marks* aggregate mixture?
 - (iii) Provide the amount of each ingredient required to prepare 1m³ of 30 Marks
 M30 grade concrete mixture as per IRC:44 2017 with OPC Grade
 43 cement, such that the target flexural strength is achieved by the mix. Consider the site conditions during the construction period.
 - (iv) To increase the sustainability of the concrete mix designed above (Q.1(iii)), if 25% volume of coarse aggregates are replaced by Recycled Concrete Aggregates (RCA) having a specific gravity of 2.4, water absorption of 1.7% and free (surface) moisture of 0.2%, what is the amount of each ingredient in the mix in dry condition?
 - (v) Which type of backer rod must be used in the transverse joints considering the rod material to be of lower cost and does not absorb moisture? Justify your answer.

	(vi)	Determine the minimum thickness of the early entry saw for cutting the transverse contraction joints?	5 Marks
	(vii)	Draw a detailed sketch of the anchor beam and terminal slab for the designed concrete mixture.	6 Marks
Q2.	3 bitumin	 Sample A is obtained from an existing 2-year bituminous pavement of composition, 125 mm base/binder course and 40 mm surface course. Sample B is prepared in laboratory aimed to be used as bituminous macadam of 50 mm and Premix carpet of 20 mm. Sample C is obtained from an existing 15-year bituminous pavement. 	6 Marks
	Fatigue te loading co only with	ests are proposed to be conducted on these samples. Provide the ondition for each sample with reason (<i>Marks are allotted for answers reason</i>).	
Q3.	Provide sł (i)	nort answer for the following: Which test is used to determine the suitability of emulsions at low temperature? (<i>Do not write options for the faculty to select</i>)	1 Mark
	(ii)	Which test is used to determine the suitability of bitumen at low temperature? (<i>Do not write options for the faculty to select</i>)	1 Mark
	(iii)	After the particle charge test of an emulsion sample, the anode was relatively clean as compared to cathode. Which type of emulsion is the sample? Justify your answer (<i>No partial marking</i>)	1 Mark
	(iv)	Bitumen A and Bitumen B have softening points of 55° C and 60° C respectively, while the stripping inflection points were observed to be 12500 passes and 13000 passes. Justify your answers . (<i>No partial marking</i>)	1 Mark
		(a) Which bitumen sample is more susceptible to temperature?(b) Which bitumen sample is more susceptible to moisture?	
	(v)	Draw the graphs (in detail) that are required to obtain the optimum binder content as per Marshall Mix Design.	2 Mark
	(vi)	List the distresses that are considered for Superpave Mix Design (<i>No Partial Marking</i>)	2 Marks
	(vii)	Describe resilient modulus of soil.	2 IVIURKS

I. Aggregates							
	Cumulative percentage passing						
Sieve Size (mm)	Coarse Aggregate	Natural sand					
37.5	100	100					
31.5	100	100					
19	91	100					
9.5	11	100					
4.75	3	93.5					
2.36	0	82.5					
1.18	0	80					
0.6	0	63					
0.3	0	10					
0.15	0	9					
0.075	0	2					
water absorption (%)	0.98	1.02					
free (surface) moisture(%)	0.25	0.30					
Specific gravity	2.62	2.48					
Shape	Angular & Non-flaky						
Condition at site & quarry	Dry	Dry					
Source of aggregates		Local					
II. Superplasticizer							
Туре	High range superplasticizer						
Base	Lignosulphonates						
Water reduction capacity	25%						
Specific gravity	1.07						
	III. Binders						
Cement	3.15 (specific gravity)						
GGBFS	2.90 (specific gravity)						
IV. Joint Sealant							
Type	Silicone sealant (Non sa	g low modulus self levelling)					
MAF	$\frac{100\% \text{ to - 50\%}}{100\% \text{ to - 50\%}}$						
Shape Factor	0.75						
V Site and rigid payament Datails							
State V. Site	Rajasthan						
Rainfall during construction	Nil						
Maximum temperature		1111					
differential	13.1 ⁰ C						
Coefficient of thermal expansion	10 x 10 ⁻⁶ / ⁰ C						
Panel size	3.75 m x 4.5 m (W X L)						

Table 1: Material & Site details

FORMULA SHEET

Terms have the standard definition

$GI=0.2a+0.005ac+0.01bd$ $\Delta = 1.18\frac{pa}{E}$	-						
$T_{pav} = 1.56 + 0.72T_{air} - 0.004Lat^{2} + 6.26\log_{10}(H + 25) - Z\sqrt{(4.4 + 0.52\sigma_{air}^{2})}$							
$T_{20mm} = (T_{air} - 0.00618Lat^2 + 0.2289Lat + 42.2)(0.9545) - 17.78$							
VTM or (% air voids) = $\frac{G_t - G_m}{G_t} \times 100$	$VMA = [VTM + (\frac{W_B}{G_B} \times \frac{G_m}{W})] x \ 100$	$VFB = \frac{(VMA - VTM)}{VMA} \ge 100$					
$G_{se} = \left[\frac{1 - P_b}{\left(\frac{1}{G_{mm}} - \frac{P_b}{G_b}\right)}\right]$	$P_{ba} = G_b \left(\frac{G_{se} - G_{sb}}{G_{se} \times G_{sb}} \right) \times 100$						
