BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI CE -G534 PAVEMENT MATERIAL CHARACTERIZATION SEMESTER I, 2022-23 MID - SEMESTER EXAMINATION (CLOSE BOOK)

Date: 03-11-2022

Time: 90 minutes Max. Marks: 50

INSTRUCTIONS:

- **Q1.** Calculate percentage passing using Fuller's gradation and FHWA gradation if *[6 Marks]* the maximum size of aggregate is 26.5 mm and other sizes to be considered are 19 mm, 12.5 mm, 9 mm, 6.36 mm, 4.75 mm, 2.36 mm, 300 micron and 75 micron. Provide the end result in a tabular form. Detailed steps are required.
- Q2. The graphical results of a Dynamic Shear Rheometer test conducted on PG [5 Marks] 64-28 binder are shown in Figure 1. Determine the rutting parameter of the binder. The angle is provided in degrees.

Figure 1: Dynamic Shear Rheometer test results

Q3.	(i)	Name the test that helps in assessing the suitability of a bitumen in cold – weather conditions.	[1 Mark]
	(ii)	Define zero shear viscosity.	[1 Mark]
	(iii)	Provide technical comments on VG 20, S35, PMB(E)40 and CRMB 55. Also state the significance of the numeric values.	[2 Marks]
	(iv)	List the tests that are specified for (a) thermal cracking, (b) rutting and (c) fatigue of mixes in the performance grading of asphalt.	[3 Marks]
	(v)	Why is it necessary to degas the sample in long-term ageing simulation test?	[2 Marks]
	(vi)	What do you mean by target viscosity of crumb rubber modified bitumen?	[3 Marks]
04.	A sne	ecimen of bituminous mix has a beight of 6 35 cm and a diameter of 10 16	[11 Marks]

Q4. A specimen of bituminous mix has a height of 6.35 cm and a diameter of 10.16 [11 Marks] cm. The weight of compacted specimen (uncoated) in air is 1240.1 g and in

water is 675.2 g. When coated with paraffin, its weight in air increases by 34.1 g and decreases by 4.1 g in water. Specific gravity of paraffin is 0.90. Use the data below:

Material	Specific gravity	% by wt. of total mix	% by wt. of total aggregates
Bitumen	1.01	5.5	
Coarse agg.	2.61	54.0	56.0
Fine agg.	2.65	34.0	36.6
Mineral	2.68	6.5	7.4
filler			

Table 1. Date for 0 4

Determine:

- Bulk density of uncoated specimen found through immersion test. (i)
- (ii) Bulk density of specimen coated with paraffin found through immersion test.
- (iii) Maximum theoretical density of specimen.
- (iv) Percent voids in compacted mix.
- (v) Percent voids in mineral aggregates.
- (vi) If the aggregates are capable of absorbing bitumen, then calculate the absorbed and effective bitumen content.
- Marshall stability tests were conducted on five specimens, each of 101.6 mm Q5. [9 Marks] diameter and 63.5 mm height. The test results are given in Table 2. (Present the required plots in one graph paper, and rite your name & BITS ID on the graph sheet).
 - Find the optimum binder content of the mix. Use a single graph (i) sheet for plotting.
 - Find the Marshall Quotient for the mix with the binder content (ii) equal to the optimum binder content.

2						
Bitumen	Stability	Flow	Air voids	VFB	G _m or G _{av}	
content (%)	(kgf)	(mm)	(%)		or G _{mb}	
3	500	9	12.5	35	2.10	
4	750	9.5	7.5	65	2.20	
5	800	12	3.5	85	2.25	
6	750	15	2.5	90	2.20	
7	650	19.5	2.0	95	2.15	

Table 2 : Marshall stability test results

- **Q6**. Describe in detail the steps to be followed during balanced area method while [5 Marks] blending 3 different materials. Assume necessary data.
- True / False. If false, correct the false statement technically. Marks shall not **Q7**. be awarded if the correction is carried out by merely writing the opposite statement.

Eg: Q: The unit of length is seconds.

Answer : False, The unit of length is not seconds (NO MARKS)

False, the unit of length is metre as per SI units (technical correction)

- (i) Kinematic viscosity of bituminous binders measures the resistance to flow [1 Mark] under shear.
- (ii)Bitumen A and bitumen B have 6 mm and 10 mm as penetration values, [1 Mark] respectively. So, in general, softening point of A is greater than softening point of B.

FORMULA SHEET

Terms have the standard definition

$GI=0.2a+0.005ac+0.01bd$ $\Delta = 1.18\frac{pa}{E}$					
$T_{pav} = 1.56 + 0.72T_{air} - 0.004Lat^{2} + 6.26\log_{10}(H + 25) - Z\sqrt{(4.4 + 0.52\sigma_{air}^{2})}$					
$T_{20mm} = (T_{air} - 0.00618Lat^2 + 0.2289Lat + 42.2)(0.9545) - 17.78$					
VTM or (% air voids) = $\frac{G_t - G_m}{G_t} \times 100$	$VMA = [VTM + (\frac{W_B}{G_B} \times \frac{G_m}{W})] x \ 100$	$VFB = \frac{(VMA - VTM)}{VMA} \ge 100$			
$G_{se} = \left[\frac{1 - P_b}{\left(\frac{1}{G_{mm}} - \frac{P_b}{G_b}\right)}\right]$	$P_{ba} = G_b \left(\frac{G_{se} - G_{sb}}{G_{se} \times G_{sb}} \right) \times 100$				