BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, PILANI

First Semester 2023 – 2024

CE G534 (Pavement Material Characterization) Comprehensive (Closed Book) Instructor In-Charge : Dr. Nishant Bhargava

Max. Marks : 70 Duration : 3 ho

- 1. Explain with the help of graphical representations, the two factors affecting the output of a hot mix plant. [4]
- Draw the three-phase diagram for bituminous mixture. Define volume of air voids in a compacted mixture mathematically. Using the volumetric relation, derive the formula for percentage air voids, in terms of specific gravity. [4]
- 3. What is a tender mix? List at least three aggregate, bitumen and construction issues causing mix to become tender. [6]
- 4. What are the overall objectives of mix design? Draw a flow chart representing the mix design methodology adopted in India. [6]
- 5. Use the gradation provided below to explain the step-by-step procedure for aggregate blending using Roth-Futch Method. Determine the trial proportion for 20 mm, 10 mm and S/D. [10]

Sieve Size,	Lower Limit	UnnonLinit	Cu	mulative % pass	ing
mm	Lower Linnt	Upper Limit	20 mm	10 mm	S/D
19	100	100	100.0	100.0	100.0
13.2	90	100	80.0	100.0	100.0
9.5	70	88	43.8	80.0	100.0
4.75	53	71	18.0	50.0	100.0
2.36	42	58	0.0	28.5	100.0
1.18	34	48	0.0	30.0	76.0
0.6	26	38	0.0	23.0	60.0
0.3	18	28	0.0	11.0	48.0
0.15	12	20	0.0	5.0	35.7
0.075	4	10	0.0	0.0	17.5

6. The results of the experimental investigations conducted for Marshall Mix Design are provided in the table below. The value of G_{mm} at 5.5% bitumen content is 2.533. Bulk specific gravity of aggregates and bitumen is 2.685 and 1.020, respectively.

Bitumen	Weight of	Weight of	Weight of	Stability,	Flow,
Content, % by	specimen in air	specimen in	specimen in air	kN	
weight of mix	(dry condition), g	water, g	(SSD condition), g	KIN	mm
5	1250	735.0	1253	12	2.5
5.5	1250	736.5	1252	13.5	3
6	1250	736.0	1251	13	3.8
6.5	1250	735.5	1251	11	5.5
7	1250	733.0	1250.5	7.5	8

Using the data, determine bulk specific gravity of mix, air voids content, void in mineral aggregates and voids filled with bitumen for each bitumen content. Compute the optimum bitumen content (OBC) and all the volumetric and strength properties at OBC. [20]

7. Det	7. Determine the mix proportioning for M50 grade concrete.					
Stip	pulations for proportioning are:					
a.	Grade designation	=	M 50			
b.	Type of cement	=	OPC 53 grade conforming to IS:26	9		
c.	Maximum nominal size of aggregate	=	9.5 mm			
d.	Minimum cement content	=	360 kg/m^3			
e.	Maximum water-cement ratio	=	0.40			
f.	Workability	=	25 mm (slump)			
g.	Degree of supervision	=	Good			

- h. Type of aggregate = Crushed angular aggregate
 i. Maximum cement content = 450 kg/m³
 j. Chemical admixture (Superplasticizer) = 1.5% by mass of cement (Water content reduction = 25%)
 k. Specific gravity of cement = 3.10
 l. Specific gravity of coarse aggregate = 2.65
 m. Specific gravity of fine aggregate = 2.75
- n. Specific gravity of superplasticizer = 1.2

Assume that fine aggregates conform to grading Zone I as per IS-383 and the combined gradation meets the IRC specification limits.

	Maximum Size	Entrapped Air, as Pe				Table 4 Value of	X	
of Age	gregate, mm	of Volume of Concrete		SI. No.	Grade of concrete		Value of X N/mm ²	
	9.5	1.5	1.5		M 30		5.0	
	19	1.0		2	M	35	5.0	
	26.5	0.9		3	M	40		
	31.5	0.8		4	M			
				5	M		6.5	
				6	M			
S.	Grade of	Assumed Standard		7	M			
No.	concrete	Deviation N/mm ²		8	M 65 &	above	8.0	
1	M 30		SI. No.	Compressive Strength at Approxin		Approximat	e Water- Cement/	
2	M 35			28-	Day N/mm ²	Cementitio	us Materials Ratio	
3	M 40					OPC-43 Grade	OPC-53 Grade	
4	M 45	5.0	1		32	0.47	0.50	
5	M 50		2		37	0.43	0.48	
6	M 55		3		42	0.39	0.45	
7	M 60		4		48	0.36	0.42	
8	M 65		5		53	0.33	0.38	
9	M 70		-		58			
10	M 75	6.0	6			0.30	0.35	
11	M 80		7		65	0.27	0.32	
			8		68	0.24	0.29	

Nominal Maximum Size of	Volume of Coarse Aggregate Per Unit Volume of Total Aggregat for Different Zones of Fine Aggregate					
Aggregate mm	Zone III	Zone II	Zone I			
9.5	0.48	0.46	0.44			
19	0.64	0.62	0.60			
26.5	0.69	0.67	0.65			
31.5	0.68	0.65	0.63			

Nominal Maximum Size of Aggregate mm	Suggestive Water Content kg/m ³
9.5	208
19	186
31.5	165