Birla Institute of Technology & Science, Pilani- Pilani Campus First Semester 2022-2023

Comprehensive Exam

Course No: CE G567 Course Title: Highway Design
Nature of Exam: Closed Book Max. Marks: 60 (Weightage: 35%)

Duration: 180 Min Date of Exam: 19/12/2022

Note:

1. All questions are compulsory.

2. Figures to the right indicate full marks

Q.1	A vertical summit curve is formed by $n1=+2.5\%$ and $n2=-4.0\%$. Design the length of summit curve to provide a stopping sight distance for vehicle travelling at 80 kmph. Take							
	f=0.35. [6]							
Q.2								
	that the gradients are 3% uphill and -2% downhill.							
	(a) Calculate minimum length of vertical curve for two-way traffic road by following							
	AASHTO approach. [12]							
Q.3	Explain in details the following emergency escape ramps							
	a) Sandpile ramp [4]							
	b) Descending-grade arrester-bed ramps [4]							
Q.4	Explain in detail the residential traffic circle [6]							
Q.5	Explain the different components of Superelevation [9]							
Q.6	Explain different types of gradients used in vertical alignment of road [9]							
Q.7	Write the IRC criteria for provision of grade separator [4]							
Q.8	Write the justification for							
	a) Reduction in travel time and vehicle emission due to provision of left turn lane at							
	intersection [2]							
	b) Maximum gradient of 3% should be provided for signalized intersection on higher design							
	speed facilities (80 km/h and greater) [2]							

	Metric				US Customary			
	Speed range (km/h)				Speed range (mph)			
	50-65	66-80	81-95	96-110	30-40	40-50	50-60	60-70
Component of passing	Average passing speed (km/h)				Average passing speed (mph)			
maneuver	56.2	70.0	84.5	99.8	34.9	43.8	52.6	62
Initial maneuver:								
a= average acceleration ^a	2.25	2.3	2.37	2.41	1.4	1.43	1.47	1.5
$t_1 = time (sec)^a$	3.6	4.0	4.3	4.5	3.6	4	4.3	4.5
$\mathbf{d_1} = \mathbf{distance} \ \mathbf{traveled}$	45	66	89	113	145	216	289	366
Occupation of left lane:								
$t_2 = time (sec)^a$	9.3	10.0	10.7	11.3	9.3	10	10.7	11.3
$\mathbf{d}_2 = \mathbf{distance} \ \mathbf{traveled}$	145	195	251	314	477	643	827	1030
Clearance length:								
$d_3 = distance traveled$	30	55	75	90	100	180	250	300
Opposing vehicle:								
	97	130	168	209	318	429	552	687
Total distance, d1+d2+d3+d4	317	446	583	726	1040	1468	1918	2383

c) Higher decision sight distance for signalized intersections located in rural areas [2]

Note: In the metric portion of the table, speed vales are in km/h, acceleration rates in km/h/s, and distances are in meters. In the U.S. customary portion of the table, speed values are in mph, acceleration rates in mph/sec, and distances are in feet.