Birla Institute of Technology and Science, Pilani

First Semester 2023-24
Mid-Semester Examination
CE G568: Traffic Systems Analysis
Maximum Duration: 90 minutes
Maximum Marks: 50

1. Consider two different road sections (say, R1 and R2). If R2 has higher free-flow speed, then which of the two sections can have better level-of-service for the same flow rate (in pcphpl)? Explain briefly with a neat sketch.
2. Consider a detector of width W. Derive an expression for the density (k) if the fraction of time the detector was occupied is given by D. Assume the average length of a vehicle to be L. [08]
3. Calculate the PHF_{15} and the corresponding peak flow rate for the minute flow rate data provided in Table 1.

Table 1: Observed minute flow rate.

Minute, i	$1-7$	$8-10$	$11-20$	21	$22-32$	$33-45$	$46-47$	$48-55$	$56-60$
N_{i}	15	25	20	36	9	5	10	25	15

4. From two consecutive film frames of traffic flow along a single lane road, one observes that there are ten cars per kilometer having zero velocity (they are parked), 20 cars per kilometer traveling at $10 \mathrm{~km} / \mathrm{h}$ and 40 cars traveling at $20 \mathrm{~km} / \mathrm{h}$. Determine the space mean speed and the time mean speed of traffic.
5. Find out the capacity of a road section for which the traffic stream obeys the fundamental diagram presented in Figure 1. Derive the corresponding $q-k$ relation and plot it also indicating all the critical points in the plot.

Figure 1: Fundamental Diagram of the traffic stream.

