1. (a) Explain the tension-stiffening effect in a reinforced concrete beam. [2 Marks]
(b) How to control deflection and cracking in a reinforced concrete beam? [2 Marks]
(c) What is the difference between lower-bound and upper-bound methods? [2 Marks]
(d) Why brick lining is essential for the design of chimneys? [2 Marks]
(e) Write two advantages of the Intz-water tank. [2 Marks]
(f) What is the portal frame method? Also, mention the assumptions in this method. [2 Marks]
(g) What are the drawbacks of the working stress and ultimate load methods? [2 Marks]
2. Derive the expressions of collapse load and location of plastic hinge for the one-way slab of length L in terms of support moments M_{A} and M_{B} and span moment Mc at hinge location using the Virtual work method. Determine the values of collapse load and location of the plastic hinge if $\mathrm{M}_{\mathrm{A}}=32 \mathrm{kNm}, \mathrm{M}_{\mathrm{B}}=25 \mathrm{kNm}$ and $\mathrm{Mc}=18 \mathrm{kNm}$. Consider that the length of the slab is equal to 5 m . [6 Marks]
3. A right-angled triangular slab is simply supported along the longest side, has a free edge along the shortest side, and the remaining side is clamped. The length of the three sides of the right-angled triangular slab is 3 m , 4 m , and 5 m . The ultimate positive moment capacities along both the x -direction and y-direction are 30 $\mathrm{kNm} / \mathrm{m}$. The negative moment capacity is equal to two-thirds of the positive moment capacity. Determine the uniformly distributed collapse load using the Virtual work method. [4 Marks]
4. A rectangular slab, $4 \mathrm{~m} \times 8 \mathrm{~m}$ with fixed support at all four sides, has a central opening of $1 \mathrm{~m} \times 2 \mathrm{~m}$. The slab carries a uniformly distributed factored load of $12 \mathrm{kN} / \mathrm{m}^{2}$, including self-weight. Determine the load dispersions and moments to be resisted at all critical sections of the slabs. [8 Marks]
5. Find the elastic, redistributed, and design bending moment diagrams of a continuous beam in Fig. 1. Assume full redistribution of 30\% as per IS 456. [8 Marks]

