Consider M 25 grade of concrete and Fe 415 grade of steel. Assume any other suitable data necessary as per standard. All the dimensions given in Fig. 1 and Fig. 2 are in $\mathbf{m m}$.

1. A simply supported isolated T-beam with a span of 5 m carries a uniformly distributed service load of 50 kN / m in the entire span and a concentrated service load of 100 kN at the mid-span, 60% are the permanent loads in the above-mentioned loads. The T-beam section has been designed for maximum bending moment and is shown in Fig. 1. Give answers to the following questions:
(i) Find the maximum curvature and deflection due to shrinkage. [$\mathbf{3}$ marks]
(ii) Compute the maximum deflection due to creep. Assume the creep coefficient is equal to 1.6. [$6 \mathbf{m a r k s}$]
(iii) Calculate the design surface crack width at a left corner point in an extreme tension face (i.e., P_{1} location). [4 marks]
2. An inverted isolated T-beam with cross-sectional dimensions is shown in Fig. 2. Give answers to the following questions:
(i) Find the approximate and actual cracking moments. [4 marks]
(ii) Estimate the stresses at both the top and bottom ends as well as at the junction of the web and flange due to the applied moment of 25 kNm . [$\mathbf{3}$ marks]
3. A flat slab is supported on the $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ column, spaced apart at $5 \mathrm{~m} \mathrm{c} / \mathrm{c}$ in both directions. The size of the rectangular column head is $500 \mathrm{~mm} \times 500 \mathrm{~mm}$. The superimposed dead load (excluding self-weight) and live loads are $2 \mathrm{kN} / \mathrm{m}^{2}$ and $4 \mathrm{kN} / \mathrm{m}^{2}$, respectively. Assume the thickness of the drop is 100 mm and the height of the floor is 3.5 m . Consider reinforced concrete density is $25 \mathrm{kN} / \mathrm{m}^{3}$. The finish load has already been considered in the superimposed dead load. Give answers to the following questions:
(i) Determine the moment in the column and middle strips of the flat slab. [6 marks]
(ii) Check the flat slab in shear for the corner column. [4 marks]

Fig. 1

Fig. 2

