BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI

MID-TERM EXAMINATION (OPEN BOOK EXAMINATION) [October 09, 2023, Room No. 1222, 1231]

COURSE NO. CE G 617 (Advance Structural Analysis)

Time: 4.0-5.30 PM
Max. Marks: 100

Note: Attempt all questions.
Q. 1 A two-span continuous beam (ABC) loaded at mid-spans of AB and BC is shown in Fig. 1. The beam is also supported by mild steel bar of diameter 40 mm at A and C through hinge support at D . The flexural rigidity of the bars could be neglected. Take $\mathrm{E}=200 \mathrm{GPa}$, $\mathrm{I}_{\text {beam }}=$ $3 \times 10^{8} \mathrm{~mm}^{4}$. Using basic flexibility method, compute the reaction at B , forces in bars, displacement at A and C , and member end actions just to the left of joint B .

Figure 1
Q. 2 For the grid structure with an spherical hinge at B as shown in Fig.2, determine the internal force resultants at joint B using flexibility method. Member $A B$ and $B C$ are oriented along X and Y directions, respectively. Assume each member is having rectangular section of width 100 mm and depth of 200 mm . Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{G}=80 \mathrm{GPa}$.
[30]

Q. 3 For the continuous beam loaded as shown in Fig.3, determine the reaction at joint B if support support at B settles vertically down by 1 mm and joint C rotates by 0.3° in anticlock wise direction. Take $\mathrm{E}=200 \mathrm{GPa}, \mathrm{I}=3 \times 10^{8} \mathrm{~mm}^{4}$.

C

Figure 3

