BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI (Rajasthan)
 COMPREHENSIVE EXAMINATION-December 7, 2023
 COURSE NO. CE G 617 (Advance Structural Analysis)
 OPEN BOOK EXAMINATION [Room no. 1226]

Time: 2.00-5.00 PM
Max. Marks: 100
Note: Attempt all questions.
Q. 1 Find the joint displacements at Joint 1 and forces in members of the plane frame. Also draw the shear force and bending moment diagram for the frame. Member 1-4 has an internal hinge at joint 1 as shown in Figure 1. Take $\mathrm{I}=2 \times 10^{5} \mathrm{~mm}^{4} ; \mathrm{E}=200 \mathrm{GPa}$, and $\mathrm{A}=9000 \mathrm{~mm}^{2}$ for all members.

Figure 1
Q. 2 Analyze the plane truss as shown in Figure 2. Find the joint displacements, force in member $B C$ and reactions at C. Assume member $A B$ is 10 mm too short. The cross-sectional area of each bar is $3000 \mathrm{~mm}^{2}$ and $\mathrm{E}=200 \mathrm{GPa}$.

Figure 2

[P.T.O.]
Q. 3 For the given plane truss in Figure 3, using direct stiffness method determine the unknown joint displacements and member force in member AB . Length of each member is 6 m . Take $\mathrm{E}=200 \mathrm{GPa}$. The cross-sectional area of each member is $3000 \mathrm{~mm}^{2}$. Comment on the degree of freedom of this structure, if the bar BC is axially rigid. Also find the horizontal reaction at A.

Figure 3
Q. 4 Using direct stiffness method, find the unknown joint displacements and reactions at B of the continuous beam as shown in Figure 4. The beam is loaded with u.d.l. of $15 \mathrm{kN} / \mathrm{m}$ on both spans along with midspan concentrated loads of 200 kN . Take $\mathrm{E}=200 \mathrm{GPa}, \mathrm{I}=30 \times 10^{6} \mathrm{~mm}^{4}$.
[20]

Figure 4

