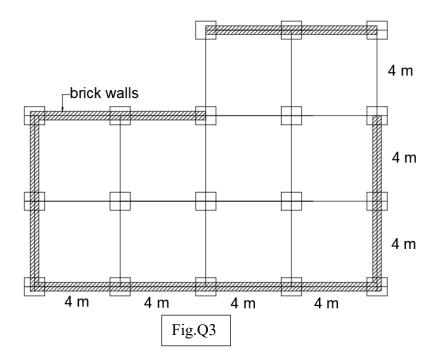
BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI First Semester (2022-23) MIDSEMESTERTEST (02/11/2022)

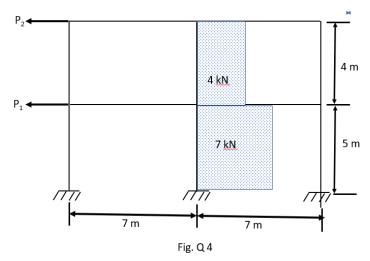
Course No. CE G618	Weightage: 30 %	
Course Title: Design of Multistoried Building	Duration: 90 min.	
Q.1a) Explain with figure loading arrangement to obtain	[3]	
 maximum span moment 		
 maximum span moment 		
 maximum support shear 		
b) State the assumptions made in cantilever method analysis of a frame for horizontal load. [2]		
c) Differentiate between characteristic load and design load.	[1]	
d) Write expressions for earth pressure and surcharge pressure explaining the different terms		
used.	[2]	
e) Wind load and earthquake are considered simultaneously. State t	rue of false with proper	
justification.	[2]	

Q.2 Find out the load on interior column and exterior column of 1st storey and 3rd floor of a


nine storey building.

Live Load on even storey = 1500 N/m^2 Live Load on odd floor = 4000 N/m^2 2 m Live Load on Roof = 2000 N/m^2 1 m Dead load of even floor = 3000 N/m^2 2 m Dead load of odd floor = 3200 N/m^2 Dead Load of roof and G.F. = 28004 m 3 m 2 m N/m² Height of odd storey = 3.3 mFig.Q2 Height of even storey = 3.82 m

[15]


Q.3 An important four storied and unsymmetrical building in Zone IV has the plan shown in Fig.Q.3. Using IS:1893-Part (1):2016, compute the seismic weights, base shear and seismic forces on each floor. Use the following data [20]

Beam size	: 300 X 400 mm
Column size	: 300 X 900 mm
Floor slab	: 150 mm thick including finish
Wall Thickness	: 250 mm including plaster
Clear storey height	: 3m
Live load	$: 5 \text{ kN/m}^2$
Type of Soil	: Rock

Q.4 The figure below shows the shear forces in the interior columns of a two storied frame. Use the Portal method to calculate corresponding [15]

- i) Applied loads P1 and P2
- ii) Column bending moments

