BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 First Semester (2022-23)
 COMPREHENSIVE EXAMINATION
 (OPEN BOOK)

Course No. CE G618
Date: 22/12/2022
Course Title: Design of Multi-storeyed Structures
Max Marks: 90
Duration: 120 minutes
Q. 1 Compute the rigidities of the bents in both the principal directions of the plan shown in Fig.Q1.

Stiffness of interior columns $=9.0$
Stiffness of exterior columns $=4.5$
Stiffness of beams $=18$

Fig.Q(1)
Also compute the center of rigidity with respect to lower left corner of the plan.
Q. 2 Fig.Q2 gives floor plan of a shear walled multistoried structure consisting of three shear walls (A, B, C \& D) made of M30 grade of concrete. The horizontal shear in the storey under consideration is denoted by P_{y} acting on its long side along the center line of the building. The storey height is taken as 3 m . It is required to compute the shear center of the structure. Wall thickness is 230 mm everywhere.

Q. 3 A 10 storeyed building has 6 bays at 4.5 m spacing as shown in Fig. Q4(a). Calculate the drift at the top under a wind pressure of $1.5 \mathrm{kN} / \mathrm{m}^{2} . \mathrm{M} 40$ grade of concrete has been used in construction.
[12]
Size of Beams $=230 \mathrm{~mm} \times 400 \mathrm{~mm}$
Size of Columns $=230 \mathrm{~mm} \times 700 \mathrm{~mm}$

Beam X-section
Q. 4 (b) gives the line plan of the above building. However direction of wind has been changed now and it is shown in the figure. Now you have four shear walls (150 mm thick and 7 meter long). You are required to locate these shear walls with proper orientation on the plan.

Q. 4 For the tower Shown in Fig.Q4
i) Compute the support reactions at Support M \& N
ii) Find the forces in the members $\mathrm{HJ}, \mathrm{HI} \& \mathrm{GI}$ as indicated in the Fig.Q4

Fig.Q4

