BIRLA INSTITUTE OF TECHONOLOGY AND SCIENCE, PILANI
 First Semester (2023-2024), Comprehensive Examination
 Course: Finite Element Analysis (CE G619)

Date: $15^{\text {th }}$ Dec. 2023
Total Marks: 80
Duration: 2:00PM-5:00PM
Q.1. Derive the two coupled differential equations of bending of beam with first order shear deformation theory (FSDT) as shown below. Solve these equations by (i) Collocation method, (ii) Galerkin method and (iii) Ritz method. Take $\mathrm{q}=1.0$.
$\frac{d}{d x}\left[G k_{s} A\left(\theta_{x}+\frac{d w}{d x}\right)\right]+q=0$
$\frac{d}{d x}\left[E I\left(\frac{d \theta_{x}}{d x}\right)\right]-G k_{s} A\left(\theta_{x}+\frac{d w}{d x}\right)=0$

The domain is $(0<x<1)$ and the boundary conditions (simply supported beam) for w and θ_{x} are,
$w(0)=w(1)=0(\mathrm{BC}$ in terms of $w)$
$\theta_{x}(0.5)=0,\left.\quad \frac{d \theta_{x}}{d x}\right|_{x=0}=0$ and $\left.\quad \frac{d \theta_{x}}{d x}\right|_{x=1}=0\left(\mathrm{BC}\right.$ in terms of $\left.\theta_{x}\right)$

Solve, these equations, taking 1-parameter solution for w and θ_{x}, as $w=C_{1} \emptyset_{1}$ and $\theta_{x}=C_{2} \emptyset_{2}$.
Determine \emptyset_{1} considering BC for w and determine \emptyset_{2} considering BC for θ_{x}. Take \emptyset_{1} as the weighting function for Eq.(1) and \emptyset_{2} as the weighting function for Eq.(2). The collocation point for both Eq. (1) and Eq. (2) is $x=0.5$.

Report, w at $x=0.5$ and report θ_{x} at $x=0$ and $x=1$ for all methods.
Q.2. Find the value of the following integration by exact method. Find the full value and reduced value of the integration by Gaussian-Quadrature method also.
$\int_{0}^{5}\left(0.01 x^{3}-0.7 x^{2}+10\right) d x$
Q.3. A rectangular plain-strain sheet $A B C D$ with thickness of 0.015 m along with loading is shown in Fig.1. Taking $E=70 G P a$ and $v=0.3$ find the displacements. The displacement along horizontal direction is restricted at point B and both horizontal and vertical displacements are restricted along AD. Take two 2-D linear triangular elements as marked in the Fig. 1 to solve.

Fig. 1 Rectangular sheet
Q.4. A bar shown in Fig. 2 is subjected to a distributed body force in the portion $A B$ only. The bar is restricted on both the ends A and C. Taking $E=70 G P a$ and $A=0.0004 m^{2}$ find the displacement at B and reactions at A and C. Derive the equilibrium equation of the element using isoparametric formulation.

Fig. 2 Bar subjected to distributed body force in portion $A B$

