Birla Institute of Technology and Science, Pilani

Semester I
Session: 2023-2024
CHE F212 FLUID MECHANICS
Mid-semester Test (Closed Book)
Date: 14/10/2023

Maximum Marks: 50
Weightage: 17 \%

Q1

[6+9 = 15]
(a)

Water enters a cylindrical tank with diameter D through two pipes at volumetric flow rates of Q_{1} and Q_{2} and leaves through a pipe with area A_{3}, with an average velocity V. The level in the tank, h, does not remain constant. Determine the time rate of change of the level in the tank.

(b)
 b)

A box with a hole of area, $A=0.1 \mathrm{~m}^{2}$, moves to the right with velocity, $u_{\text {box }}=0.5 \mathrm{~m} / \mathrm{s}$, through an incompressible fluid, as shown in the figure. If the fluid has a velocity of $u_{\text {fluid }}=2 \mathrm{~m} / \mathrm{s}$, which is at an angle, $\theta=30^{\circ}$, to the vertical, determine how long it will take to fill the box with fluid. Assume the box volume is $\mathrm{V}_{\text {box }}=0.5 \mathrm{~m}^{3}$ and is initially empty.

Q 2
$[5+8+7=20]$
(a)

An inclined tube manometer has a well of 20 mm diameter and a 4 mm inner diameter tube. If it is proposed to use a scale graduated accurately in mm to measure the pressure directly, i.e., 1 mm scale division indicates a 1 mm pressure head change, then what would be the angle at which the tube must be inclined with respect to vertical to do this?
(b)

For a 2D flow field, $\vec{V}=u^{2} \hat{\imath}+2 \hat{\jmath}$, find the equation of streakline passing through the point $(x$, $y)=(1,1)$ at time $t=0$.
(c)

Fluids of viscosities $\mu_{1}=0.2 \mathrm{~Pa} \cdot \mathrm{~s}$ and $\mu_{2}=0.3$ $\mathrm{Pa} \cdot \mathrm{s}$ are contained between two plates (each plate is $1 \mathrm{~m}^{2}$ in area). The thicknesses are h_{1} $=0.75 \mathrm{~mm}$ and $h_{2}=0.35 \mathrm{~mm}$, respectively. Find the force F to make the upper plate move at a speed of $1 \mathrm{~m} / \mathrm{s}$. What is the fluid velocity at the interface between the two fluids?

A jet of water is deflected by a vane mounted on a cart. The water jet has an area, $A=0.01 \mathrm{~m}^{2}$, everywhere and is turned at an angle $\theta=30^{\circ}$ with respect to the horizontal. The pressure everywhere within the jet is atmospheric. The incoming jet velocity with respect to the ground (axes XY) is $V_{\mathrm{jet}}=5 \mathrm{~m} / \mathrm{s}$. The cart has a mass of $M=50 \mathrm{~kg}$. Determine the force components, F_{x} and F_{y}, required to hold the cart stationary.

Birla Institute of Technology and Science, Pilani

Semester I Session: 2023-2024
CHE F212 FLUID MECHANICS Mid-semester Test (Open Book)
Date: 14/10/2023
Duration: 30 minutes
Maximum Marks: 25
Weightage: 8%
Q 1
A Newtonian fluid is in laminar flow in a narrow slit formed by two large parallel walls a distant L apart (direction x). One of the walls (left one) is stationary, and one on the right is moving vertically upward with a constant velocity (direction z), v_{0}. Obtain the expression for momentum flux and velocity distribution. Also, sketch the qualitative plot of momentum flux and velocity variation with L.

