BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE (BITS) PILANI – Pilani Campus Comprehensive Exam OPEN BOOK Date: 09.12.2023 Time: 180 min. | Total Marks: 120

First Semester, 2023 – '24 | CHE F213 | Chemical Engineering Thermodynamics

ID	Name	Section
		•

1.

An electric motor under steady load draws 9.7 amperes at 110 volts; it delivers 1.25(hp) of mechanical energy. The temperature of the surroundings is 300 K. What is the total rate of entropy generation in $W \cdot K^{-1}$?

[15 Marks]

2.

Calculate Z and V for sulfur hexafluoride at 75° C and 15 bar by the following equations:

(a) The truncated virial equation with the following experimental values of virial coefficients:

$$B = -194 \text{ cm}^3 \cdot \text{mol}^{-1}$$
 $C = 15,300 \text{ cm}^6 \cdot \text{mol}^{-2}$

- (b) The truncated virial equation with a value of B from the generalized Pitzer correlation
- (c) The Redlich/Kwong equation
- (d) The Soave/Redlich/Kwong equation
- (e) The Peng/Robinson equation

For sulfur hexafluoride, $T_c = 318.7$ K, $P_c = 37.6$ bar, $V_c = 198$ cm³·mol⁻¹, and $\omega = 0.286$.

[25 Marks]

3.

A system formed initially of 2 mol CO₂, 5 mol H₂, and 1 mol CO undergoes the reactions:

$$CO_2(g) + 3H_2(g) \rightarrow CH_3OH(g) + H_2O(g)$$
$$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$$

Develop expressions for the mole fractions of the reacting species as functions of the reaction coordinates for the two reactions.

[10 Marks]

PTO

4. In order to prepare 2 m³ of alcohol-water solution, alcohol of mole fraction 0.4 is required to be mixed with water at 25°C. Determine the volume of alcohol and water needed to prepare the mixture. Given that,

Partial molar volume of alcohol = $38.8 \times 10^{-6} \text{ m}^3/\text{mol}$ Partial molar volume of water = $17.2 \times 10^{-6} \text{ m}^3/\text{mol}$ Molar volume of alcohol = $39.21 \times 10^{-6} \text{ m}^3/\text{mol}$ Molar volume of water = $18 \times 10^{-6} \text{ m}^3/\text{mol}$

- 5. Assuming the validity of Raoult's law, do the following calculations for the benzene(1)/toluene(2) system:
 - (a) Given $x_1 = 0.33$ and $T = 100^{\circ}$ C, find y_1 and P.
 - (*b*) Given $y_1 = 0.33$ and $T = 100^{\circ}$ C, find x_1 and *P*.
 - (c) Given $x_1 = 0.33$ and P = 120 kPa, find y_1 and T.
 - (d) Given $y_1 = 0.33$ and P = 120 kPa, find x_1 and T.

[20 Marks]

[10 Marks]

- 6. Using the virial equation of state estimate the residual enthalpy and entropy for propane at 60°C and 2.5 bar. [10 Marks]
- 7. Exhaust steam at 100 kPa and 200°C enters the subsonic diffusion of a jet engine steadily with a velocity of 190 m/s. The inlet area of the diffuser is 2000 cm². The steam leaves the diffuser with velocity of 70 m/s. The pressure difference increase is 200 kPa. The heat losses from the diffuser to the surrounding is estimated to be 100 kW. Determine,
 - a) The mass flow rate of the steam.
 - b) The temperature of the steam leaving the diffuser.
 - c) The area of the diffuser outlet.

Given that, $V_1 = 2.172 \text{ m}^3/\text{kg}$ and $H_1 = 2875.3 \text{ kJ/kg}$ [15 Marks]

8. Estimate the fugacity of iso-butane at 15 atm and 87 °C using the compressibility factor correlation, given that the second virial coefficient, B is -4.28 x 10⁻⁴ m³/mol. **[15 Marks]**

End