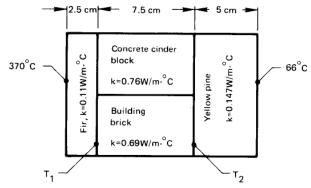
BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, PILANI CAMPUS DEPARTMENT OF CHEMICAL ENGINEERING Second Semester 2022-2023 CHE F241 Heat Transfer

Mid Sem Test (Closed Book)
Duration: 90 Mins


Date: 14.03.2023 Marks: 90

.....

Note: Make suitable assumptions, if necessary.

1. (15 Marks)

Consider the composite wall shown in Figure. The concrete cinder block and building brick sections are of equal thickness. Determine T_1 , T_2 , q and the percentage of q that flows through the brick. Assume one-dimensional heat flow.

2. (15 Marks)

A type 316 stainless steel pipe (k = 15 W/m K) has a 6 cm inside diameter and an 8 cm outside diameter with a 2 mm layer of 85% magnesia insulation (k = 0.07 W/m K) around it. Liquid at 112 °C flows inside. The air around the pipe is at 20 °C. Calculate the heat transfer per meter length of pipe and overall heat transfer coefficient based on the inside area. The inside and outside heat transfer coefficients are 346 and 6 W/m² K, respectively.

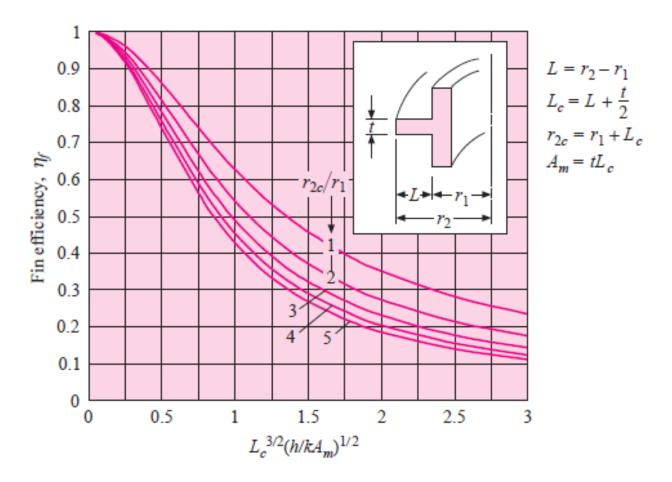
3. (15 Marks)

Two hundred circumferential fins of rectangular profile are constructed of aluminium and placed on a 6 cm diameter tube maintained at 120 °C. The length of the fin is 3 cm and its thickness is 2 mm. The fin is exposed to a convection environment at 20 °C with $h = 220 \text{ W/m}^2$ °C. Calculate the total heat lost from the finned-tube arrangement over the 1 m length. Thermal conductivity of aluminium is 200 W/m °C.

4. (15 Marks)

A 250°C cylindrical copper billet, 4 cm in diameter and 8 cm long, is suddenly cooled in air at 25°C. The heat transfer coefficient is 5 W/m² K. Can this be treated as lumped-capacity cooling? What is the temperature of the billet after 10 minutes.

 $k = 386 \text{ W/m}^{\circ}\text{C};$ $\alpha = 11.23 \text{ x } 10^{-5} \text{ m}^2/\text{s}; \ \rho = 8954 \text{ kg/m}^3; \ c_p = 0.384 \text{ kJ/kg}^{\circ}\text{C}$


5. (15 Marks)

Air at 20 °C and moving at 15 m/s is warmed by an isothermal steam-heated plate at 110 °C, 0.5 m in length and 0.5 m in width. Find the average heat transfer coefficient and the total heat transferred. Also, calculate the local heat transfer coefficient, thermal boundary layer thickness, and hydrodynamic boundary layer thickness at the trailing edge (x = L).

6. (15 Marks)

Air at 300 K and 1 atm enters in a tube bank consists of a square arry of 64 tubes arranged in an in-line position. The tube diameter is 2.5 cm and centre to centre tube spacing is 5.0 cm. The incoming velocity is 10 m/s and the tube wall temperatures are constant at 350 K. Calculate the heat loss by the tubes.

Figure 2-12 | Efficiencies of circumferential fins of rectangular profile, according to Reference 3.

<i>т</i> ,к	ρ kg/m ³	^c p kJ/kg·°C	$\mu \ge 10^5$ kg/m \cdot s	ν x 10 ⁶ m ² /s	k W/m.∙°C	α x 10 ⁴ m ² /s	Pr					
100	3.6010	1.0266	0.6924	1.923	0.009246	0.02501	0.770					
150	2.3675	1.0099	1.0283	4.343	0.013735	0.05745	0.753					
200	1.7684	1.0061	1.3289	7.490	0.01809	0.10165	0.739					
250	1.4128	1.0053	1.5990	11.31	0.02227	0.15675	0.722					
300	1.1774	1.0057	1.8462	15.69	0.02624	0.22160	0.708					
350	0.9980	1.0090	2.075	20.76	0.03003	0.2983	0.697					
400	0.8826	1.0140	2.286	25.90	0.03365	0.3760	0.689					
450	0.7833	1.0207	2.484	31.71	0.03707	0.4222	0.683					
500	0.7048	1.0295	2.671	37.90	0.04038	0.5564	0.680					
550	0.6423	1.0392	2.848	44.34	0.04360	0.6532	0.680					
600	0.5879	1.0551	3.018	51.34	0.04659	0.7512	0.680					
650	0.5430	1.0635	3.177	58.51	0.04953	0.8578	0.682					
700	0.5030	1.0752	3.332	66.25	0.05230	0.9672	0.684					
750	0.4709	1.0856	3.481	73.91	0.05509	1.0774	0.686					
800	0.4405	1.0978	3.625	82.29	0.05779	1.1951	0.689					
850	0.4149	1.1095	3.765	90.75	0.06028	1.3097	0.692					
900	0.3925	1.1212	3.899	99.3	0.06279	1.4271	0.696					
950	0.3716	1.1321	4.023	108.2	0.06525	1.5510	0.699					
1000	0.3524	1.1417	4.152	117.8	0.06752	1.6779	0.702					
1100	0.3204	1.160	4.44	138.6	0.0732	1.969	0.704					
1200	0.2947	1.179	4.69	159.1	0.0782	2.251	0.707					
1300	0.2707	1.197	4.93	182.1	0.0837	2.583	0.705					
1400	0.2515	1.214	5.17	205.5	0.0891	2.920	0.705					
1500	0.2355	1.230	5.40	229.1	0.0946	3.262	0.705					
1600	0.2211	1.248	5.63	254.5	0.100	3.609	0.705					
1700	0.2082	1.267	5.85	280.5	0.105	3.977	0.705					
1800	0.1970	1.287	6.07	308.1	0.111	4.379	0.704					
1900	0.1858	1.309	6.29	338.5	0.117	4.811	0.704					
2000	0.1762	1.338	6.50	369.0	0.124	5.260	0.702					
2100	0.1682	1.372	6.72	399.6	0.131	5.715	0.700					
2200	0.1602	1.419	6.93	432.6	0.139	6.120	0.707					
2300	0.1538	1.482	7.14	464.0	0.149	6.540	0.710					
2400	0.1458	1.574	7.35	504.0	0.161	7.020	0.718					
2500	0.1394	1.688	7.57	543.5	0.175	7.441	0.730					

The values of μ , k, c_p , and Pr are not strongly pressure-dependent and may be used over a fairly wide range of pressures

Flow regime	Restrictions	Equation	Equation num
		Heat transfer	
Laminar, local	$T_w = \text{const}, \text{Re}_x < 5 \times 10^5,$ 0.6 < Pr < 50	$Nu_x = 0.332 Pr^{1/3} Re_x^{1/2}$	(5-44)
Laminar, local	$T_w = \text{const, } \operatorname{Re}_x < 5 \times 10^5,$ $\operatorname{Re}_x \operatorname{Pr} > 100$	$Nu_{x} = \frac{0.3387 \operatorname{Re}_{x}^{1/2} \operatorname{Pr}^{1/3}}{\left[1 + \left(\frac{0.0468}{\operatorname{Pr}}\right)^{2/3}\right]^{1/4}}$	(5-51)
Laminar, local	$q_w = \text{const}, \operatorname{Re}_x < 5 \times 10^5,$ 0.6 < Pr < 50	$Nu_x = 0.453 \text{ Re}_x^{1/2} \text{ Pr}^{1/3}$	(5-48)
Laminar, local	$q_w = \text{const}, \operatorname{Re}_x < 5 \times 10^5$	$Nu_{x} = \frac{0.4637 \text{ Re}_{x}^{1/2} \text{ Pr}^{1/3}}{\left[1 + \left(\frac{0.0207}{\text{Pr}}\right)^{2/3}\right]^{1/4}}$	(5-51)
Laminar, average Laminar, local	$Re_L < 5 \times 10^5, T_w = const$ $T_w = const, Re_x < 5 \times 10^5,$ $Pr \ll 1 \text{ (liquid metals)}$	$\overline{\mathrm{Nu}}_L = 2 \ \mathrm{Nu}_{x=L} = 0.664 \ \mathrm{Re}_L^{1/2} \ \mathrm{Pr}^{1/3}$ $\mathrm{Nu}_x = 0.564 (\mathrm{Re}_x \ \mathrm{Pr})^{1/2}$	(5-46)
Laminar, local	$T_w = \text{const, starting at} x = x_0, \text{Re}_x < 5 \times 10^5, 0.6 < \text{Pr} < 50$	Nu _x = 0.332 Pr ^{1/3} Re _x ^{1/2} $\left[1 - \left(\frac{x_0}{x}\right)^{3/4}\right]^{-1/3}$	(5-43)
Furbulent, local	$T_w = \text{const}, 5 \times 10^5 < \text{Re}_x < 10^7$	$St_x Pr^{2/3} = 0.0296 Re_x^{-0.2}$	(5-81)
urbulent, local	$T_w = \text{const}, 10^7 < \text{Re}_x < 10^9$	$St_x Pr^{2/3} = 0.185(\log Re_x)^{-2.584}$	(5-82)
urbulent, local	$q_w = \text{const}, 5 \times 10^5 < \text{Re}_x < 10^7$	$Nu_x = 1.04 Nu_{xTw=const}$	(5-87)
aminar-turbulent,	$T_w = \text{const}, \text{Re}_x < 10^7,$	$\overline{\text{St}} \text{Pr}^{2/3} = 0.037 \text{Re}_L^{-0.2} - 871 \text{Re}_L^{-1}$ $\overline{\text{Nu}}_I = \text{Pr}^{1/3} (0.037 \text{Re}_L^{0.8} - 871)$	(5-84)
average aminar-turbulent, average	$\begin{aligned} &\operatorname{Re}_{\operatorname{crit}} = 5 \times 10^5 \\ &T_w = \operatorname{const}, \operatorname{Re}_x < 10^7, \\ &\operatorname{liquids}, \mu \text{ at } T_\infty, \\ &\mu_w \text{ at } T_w \end{aligned}$	$\overline{\text{Nu}_L} = \Pr^{1/3} (0.037 \text{ Ke}_L^{-0} - 8/1)$ $\overline{\text{Nu}_L} = 0.036 \Pr^{0.43} (\text{Re}_L^{0.8} - 9200) \left(\frac{\mu_\infty}{\mu_w}\right)^{1/4}$	(5-85) (5-86)
		Boundary-layer thickness	
Laminar	$\text{Re}_x < 5 \times 10^5$	$\frac{\delta}{x} = 5.0 \text{ Re}_x^{-1/2}$ $\frac{\delta}{\delta x} = 0.381 \text{ Re}_x^{-1/5}$	$=\frac{\delta_t}{1}=\frac{1}{1}$ Pr ^{-1/3}
Turbulent	$Re_x < 10^7$,	$\frac{\delta}{x} = 0.381 \text{ Re}_x^{-1/5}$	δ 1.026

 $\frac{\delta}{x} = 0.381 \text{ Re}_x^{-1/5} - 10,256 \text{ Re}_x^{-1}$

Friction coefficients

 $C_{fx} = 0.332 \text{ Re}_x^{-1/2}$ $C_{fx} = 0.0592 \text{ Re}_x^{-1/5}$

A from Table 5-1

 $C_{fx} = 0.37(\log \text{Re}_x)^{-2.584}$

 $\overline{C}_f = \frac{0.455}{(\log \operatorname{Re}_L)^{2.584}} - \frac{A}{\operatorname{Re}_L}$

 $\delta = 0$ at x = 0

 $\text{Re}_x < 5 \times 10^5$

 $5 \times 10^5 < \text{Re}_x < 10^7$ $10^7 < \text{Re}_x < 10^9$

 $Re_{crit} < Re_x < 10^9$

 $5 \times 10^5 < \text{Re}_x < 10^7$,

 $\begin{aligned} &\text{Re}_{\text{crit}} = 5 \times 10^5, \\ &\delta = \delta_{\text{lam}} \text{ at } \text{Re}_{\text{crit}} \end{aligned}$

Table 5-2 Summary of equations for flow over flat plates. Properties evaluated at T	$T_f = (T_w + T_\infty)/2$ unless otherwise noted.
---	--

Turbulent

Laminar, local

Turbulent, local

Turbulent, local

Turbulent, average

Table 6-8 Summary of	of forced-convection relations.	(See text for property evaluation.)
------------------------	---------------------------------	-------------------------------------

Geometry	Equation	Restrictions	Equation numbe
Tube flow	$\operatorname{Nu}_d = 0.023 \operatorname{Re}_d^{0.8} \operatorname{Pr}^n$	Fully developed turbulent flow, n = 0.4 for heating, n = 0.3 for cooling, 0.6 < Pr < 100, $2500 < Re_d < 1.25 \times 10^5$	(6-4 <i>a</i>)
Tube flow	$Nu_d = 0.0214 (Re_d^{0.8} - 100) Pr^{0.4}$	$0.5 < \Pr < 1.5,$ $10^4 < \operatorname{Re}_d < 5 \times 10^6$	(6 - 4 <i>b</i>)
	$Nu_d = 0.012(Re_d^{0.87} - 280)Pr^{0.4}$	$\begin{array}{l} 1.5 < \Pr < 500, \\ 3000 < \operatorname{Re}_d < 10^6 \end{array}$	(6 - 4 <i>c</i>)
Tube flow	$Nu_d = 0.027 \text{ Re}_d^{0.8} \Pr^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$	Fully developed turbulent flow	(6-5)
Tube flow, entrance region	$Nu_d = 0.036 \text{ Re}_d^{0.8} \text{Pr}^{1/3} \left(\frac{d}{L}\right)^{0.055}$	Turbulent flow	(6-6)
	See also Figures 6-5 and 6-6	$10 < \frac{L}{d} < 400$	
Tube flow	Petukov relation	Fully developed turbulent flow, 0.5 < Pr < 2000, $10^4 < Re_d < 5 \times 10^6$, $0 < \frac{\mu_b}{\mu_w} < 40$	(6-7)
Tube flow	$Nu_d = 3.66 + \frac{0.0668(d/L) \operatorname{Re}_d \operatorname{Pr}}{1 + 0.04[(d/L) \operatorname{Re}_d \operatorname{Pr}]^{2/3}}$	Laminar, $T_w = \text{const.}$	(6-9)
Tube flow	$\operatorname{Nu}_{d} = 1.86(\operatorname{Re}_{d}\operatorname{Pr})^{1/3} \left(\frac{d}{L}\right)^{1/3} \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$	Fully developed laminar flow,	(6-10)
	$(L) (\mu_w)$	$T_w = \text{const.}$ $\text{Re}_d \Pr{\frac{d}{L}} > 10$	
Rough tubes	$\operatorname{St}_b \operatorname{Pr}_f^{2/3} = \frac{f}{s}$ or Equation (6-7)	Fully developed turbulent flow	(6-12)
Noncircular ducts	Reynolds number evaluated on basis of hydraulic diameter $D_H = \frac{4A}{P}$ A = flow cross-section area, P = wetted perimeter	Same as particular equation for tube flow	(6-14)
Flow across cylinders	$\operatorname{Nu}_f = C \operatorname{Re}_{df}^n \operatorname{Pr}^{1/3} C$ and <i>n</i> from Table 6-2	$0.4 < \operatorname{Re}_{df} < 400,000$	(6-17)
Flow across cylinders	$Nu_{df} = 0.3 + \frac{0.62 \operatorname{Re}_{f}^{1/2} \operatorname{Pr}^{1/3}}{\left[1 + \left(\frac{0.4}{\operatorname{Pr}}\right)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{\operatorname{Re}_{f}}{282,000}\right)^{5/8}\right]^{4/5}$	$10^2 < \text{Re}_f < 10^7,$ Pe > 0.2	(6-21)
Flow across cylinders		See text	(6-18) to (6-20) (6-22) to (6-24)
Flow across noncircular cylinders	Nu = $C \operatorname{Re}_{df}^{n} \operatorname{Pr}^{1/3}$ See Table 6-3 for values of C and n .		(6-17)
Flow across spheres	$\operatorname{Nu}_{df} = 0.37 \operatorname{Re}_{df}^{0.6}$	$Pr \sim 0.7$ (gases), $17 < Re < 70,000$	(6-25)
	$\operatorname{Nu}_d \operatorname{Pr}^{-0.3}(\mu_w/\mu)^{0.25} = 1.2 + 0.53 \operatorname{Re}_d^{0.54}$	Water and oils $1 < \text{Re} < 200,000$ Properties at T_{∞}	(6-29)
	Nu _d = 2 + $\left(0.4 \operatorname{Re}_d^{1/2} + 0.06 \operatorname{Re}_d^{2/3}\right) \operatorname{Pr}^{0.4} (\mu_{\infty}/\mu_w)^{1/4}$	$0.7 < \Pr < 380, 3.5 < \operatorname{Re}_d < 80,000,$ Properties at T_{∞}	(6-30)
Flow across tube banks	$\operatorname{Nu}_{f} = C \operatorname{Re}_{f;\max}^{n} \operatorname{Pr}_{f}^{1/3} C$ and <i>n</i> from Table 6-4	See text	(6-17)
Flow across tube banks	$\operatorname{Nu}_{d} = C \operatorname{Re}_{d,\max}^{n} \operatorname{Pr}^{0.36} \left(\frac{\operatorname{Pr}}{\operatorname{Pr}_{w}}\right)^{1/4}$	$0.7 < \Pr < 500, 10 < \operatorname{Re}_{d,\max} < 10^6$	(6-34)
Liquid metals		See text	(6-37) to (6-48)
Friction factor	$\Delta p = f(L/d)\rho u_m^2/2g_c,$ $u_m = \dot{m}/\rho A_c$		(6-13)

$\frac{S_n}{d}$											
	1.	25	1	1.5		.0	3.0				
$\frac{S_p}{d}$	С	n	С	n	С	n	С	п			
				In line							
1.25	0.386	0.592	0.305	0.608	0.111	0.704	0.0703	0.752			
1.5	0.407	0.586	0.278	0.620	0.112	0.702	0.0753	0.744			
2.0	0.464	0.570	0.332	0.602	0.254	0.632	0.220	0.648			
3.0	0.322	0.601	0.396	0.584	0.415	0.581	0.317	0.608			
				Staggered							
0.6	_	_	_	_	_	_	0.236	0.636			
0.9	_	_	_	_	0.495	0.571	0.445	0.581			
1.0	_	_	0.552	0.558	_	_	_	_			
1.125	_	_	_	_	0.531	0.565	0.575	0.560			
1.25	0.575	0.556	0.561	0.554	0.576	0.556	0.579	0.562			
1.5	0.501	0.568	0.511	0.562	0.502	0.568	0.542	0.568			
2.0	0.448	0.572	0.462	0.568	0.535	0.556	0.498	0.570			
3.0	0.344	0.592	0.395	0.580	0.488	0.562	0.467	0.574			

 Table 6-4 | Modified correlation of Grimson for heat transfer in tube banks of 10 rows or more, from Reference 12, for use with Equation (6-17).

Table 6-5 | Ratio of h for N rows deep to that for 10 rows deep, for use with Equation (6-17).

Ν	1	2	3	4	5	б	7	8	9	10
Ratio for staggered tubes Ratio for in-line tubes				0.89 0.90					0.99 0.99	

$$u_{\max} = u_{\infty}[S_n/(S_n - d)]$$

 $u_{\max} = \frac{u_{\infty}(S_n/2)}{\left[(S_n/2)^2 + S_p^2\right]^{1/2} - d}$