BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

Second Semester 2022-2023 CHE F244: Separation Processes-I Mid-Semester Examination

Date: 18.03.2023 Time: 9:00-10:30 AM Maximum Marks: 90

Note: The question paper consists of two parts. Answer **Part A** and **Part B** in separate answer books. Collect answer book for **Part B** after submitting **Part A** answer book.

PART – A (Closed Book)

Time: 9:00 - 9.40 A.M. Marks: 40

1. (10 Marks) Define the following terms with respect to mass transfer (give suitable examples wherever required):

Phase, Property, System, Phase equilibrium, Molecular diffusion, Molar flux (N), Molar diffusion flux (J), Stage, Stage efficiency, Murphree stage efficiency (E_M).

- 2. (5 Marks) Write the physical significance (in terms of ratios) of the dimensionless numbers (Sc, Sh, St_M, Pe_M) which are generally used in mass transfer. Obtain a relationship between mass transfer coefficient (k_L) and heat transfer coefficient (h) using Colburn j-factors (j_H and j_D) for heat and mass transfer (Colburn Analogy).
- 3. (10 Marks) Assuming the equilibrium distribution curve to be a straight line of slope $m = (Y_2^* Y_2) / (X_2 X_2^*)$, derive the relation between Murphree stage efficiencies, E_{MG} and E_{ML} as

 $E_{MG} = E_{ML}/[S(1-E_{ML}) + E_{ML}]$, where S = mG'/L', Stripping factor.

The symbols have their usual meanings. Start from LHS to reach RHS.

- 4. (15 Marks)
 - (a) Outline the properties of the interface.
 - (b) State the assumptions made in the two-film theory.
 - (c) Outline the theories of mass transfer showing the relationship between mass transfer coefficient and the diffusivity.

~

Time: 9:40 – 10:30 A.M.

Marks: 50

Note: Only Text book (Seader), Ref. book (Treybal) and hand-written class notes are allowed. Photocopy of the class notes are not allowed.

1. **(20** *Marks***)**

Oxygen (A) is diffusing through non-diffusing nitrogen (B) at 1std atm and 27°C. The partial pressures of oxygen at two planes 2 mm apart are 0.25 and 0.10 atm, respectively. Calculate

- (a) the mutual diffusivity of oxygen and nitrogen at 27°C and 1 atm using FSG equation.
- (b) the molar flux of diffusion of oxygen, N_A in kmol/m²s.
- (c) the mass transfer coefficients F, k_p , k_y and k_c for this system.

2. **(30 Marks)**

Propane is to be stripped from a non-volatile oil by steam in a cross-current cascade. The propane-oil is fed at 100 mole/h and the steam rate is 4 mole/h in each stage. The oil originally contains 2.55 mole% propane, and this concentration must be reduced to 0.25 mole%. The cascade is maintained at 135°C and 4 atm absolute pressure. The molecular weight of the heavy oil is 300 and that of propane is 44. The equilibrium relationship is as given below:

X = Mole propane/ Mole pure oil	0	0.005	0.010	0.015	0.020	0.025
Y = Mole propane/Mole pure steam	0	0.136	0.312	0.550	0.890	1.412

- (a) How many equilibrium stages will be required?
- (b) If each stage operates at 90% efficiency, how many real stages will be required?
- (c) If the separation is carried out in a counter-current cascade with 100 mole/h of oil-propane feed and 4 moles/h of pure steam, how many equilibrium stages will be needed?

~