- 1. This question paper consists of two parts. Part A is close book and Part B is open (only text) book.
- 2. Part-B answer book will be supplied after you return Part-A answer book.
- 3. Make and state suitable, logical and justifiable assumptions if necessary.
- 4. Give just 2 iterations for iterative procedure(s).

INSTRUCTIONS

Be to the point. Do not be descriptive. Use as less words as possible.

PART A (CLOSE BOOK)

Q1 [Marks 25] (a) Give the CRE algorithm [1]; (b) List 5 criteria used to evaluate laboratory rectors [5]; (c) We can use membrane reactors to increase the selectivity in multiple reactions (*True or False*) [1]; (d) Justify: "*in no other type of reaction is exactness in the calculation of the time needed to carry out the reaction more important than in series reactions*" [3]; (e) Define turnover frequency and dispersion in the context of catalysis [2]; (f) Use well-labelled schematics to describe 3 surface reaction models [5]; (g) What do 3 main moments of RTD signify? [3]; (h) Which 5 models help us to predict the conversion (in non-ideal reactors) from RTD data? Categorize them in 3 groups [5].

PART B (ONLY OPEN TEXT BOOK)

Q2 [Marks 20] Compound A undergoes a reversible isomerization reaction, $A \rightleftharpoons B$, over a supported metal catalyst. Under pertinent conditions, A and B are liquid, miscible, and of nearly identical density; the equilibrium constant for the reaction (in concentration units) is 5.8. In a fixed-bed isothermal flow reactor in which back mixing is negligible, a feed of pure A undergoes a net conversion to B of 55%. The reaction is elementary. If a second, identical flow reactor at the same temperature is placed downstream from the first, what overall conversion of A would you expect if the reactors are directly connected in series?

Q3 [Marks 20] For the given (to your RHS) (1) set of reactions, describe 3 reactor systems and conditions to maximize the selectivity to the desired product D. Make sketches (schematics) to support your choices. The rates are in (mol/dm³.s), and concentrations are in (mol/dm³). Say: T_1 and $T_2 = 300$ and 1000 K.

(1) $A + B \to D$ $-r_{1A} = 10 \exp(-8,000 \text{ K/T})C_A C_B$ (2) $A + B \to U$ $-r_{2A} = 100 \exp(-1,000 \text{ K/T})C_A^{1/2}C_B^{3/2}$

ΡΤΟ

Q4 [Marks 15] The endothermic liquid-phase elementary reaction $A+B\rightarrow 2C$ proceeds, substantially, to completion in a single steamjacketed, continuous-stirred reactor. From the following data, calculate the steady-state reactor temperature: Reactor volume: 125 gal; Steam jacket area: 10 ft²; Jacket steam: 150 psig (365.9°F saturation temperature); Overall heat-transfer coefficient of jacket, *U*: 150 Btu/h.ft².°F; Agitator shaft horsepower: 25 hp; Heat of reaction, ΔH^{0}_{Rx} = +20,000 Btu/lb mol of A (independent of temperature).

	Component		
	A	B	С
Feed (lbmol/hr)	10.0	10.0	0
Feed temperature (°F)	80	80	-
Specific heat (Btu/lb mol·°F)"	51.0	44.0	47.5
Molecular weight	128	94	222
Density (lb/ft ³)	63.0	67.2	65.0

*Independent of temperature.

Q5 [Marks 20] The following reactions take place on a nickel catalyst (spherical particles):

Overall reaction	$:A + B \rightarrow C$
Adsorption	$:A + Ni \leftrightarrow A.Ni$
	$B + Ni \leftrightarrow B.Ni$
Reaction	$:A.Ni + B.Ni \rightarrow C + 2Ni$

Determine the rate determining step (RDS) and rate of formation of C (r_c) in consistent with the experimental data. (1 mole = 6.023 x 10^{23} molecules).

Figure (RHS): A plot of the experimental (formation) rate of *C* (r_c) with $K_B P_B = 10$. $(K_B = \text{Adsorption constant of B}, P_B = \text{partial pressure of } A)$

Q6 [Marks 20] The flow through a reactor is 10 dm³/min. A pulse test gave the concentration measurements at the outlet as given in the table to your right:

- (a) Plot the external age distribution *E*(*t*) as a function of time.
- **(b)** What are the mean residence time t_m , and the variance, σ^2 ?

END