1. This question paper consists of two parts. Part A is close book and Part B is open (only text) book.
2. Part-B answer book will be supplied after you return Part-A answer book.
3. Make and state suitable, logical and justifiable assumptions if necessary.
4. Give just 2 iterations for iterative procedure(s).

Be to the point. Do not be descriptive. Use as less words as possible.

## PART A (CLOSE BOOK)

Q1 [Marks 25] (a) Give the CRE algorithm [1]; (b) List 5 criteria used to evaluate laboratory rectors [5]; (c) We can use membrane reactors to increase the selectivity in multiple reactions (True or False) [1]; (d) Justify: "in no other type of reaction is exactness in the calculation of the time needed to carry out the reaction more important than in series reactions" [3]; (e) Define turnover frequency and dispersion in the context of catalysis [2]; (f) Use well-labelled schematics to describe 3 surface reaction models [5]; (g) What do 3 main moments of RTD signify? [3]; (h) Which 5 models help us to predict the conversion (in non-ideal reactors) from RTD data? Categorize them in 3 groups [5].

## PART B ( ONLY OPEN TEXTBOOK)

Q2 [Marks 20] Compound $A$ undergoes a reversible isomerization reaction, $A \rightleftarrows \mathrm{~B}$, over a supported metal catalyst. Under pertinent conditions, A and B are liquid, miscible, and of nearly identical density; the equilibrium constant for the reaction (in concentration units) is 5.8 . In a fixed-bed isothermal flow reactor in which back mixing is negligible, a feed of pure A undergoes a net conversion to B of $55 \%$. The reaction is elementary. If a second, identical flow reactor at the same temperature is placed downstream from the first, what overall conversion of A would you expect if the reactors are directly connected in series?

Q3 [Marks 20] For the given (to your RHS) set of reactions, describe 3 reactor systems and conditions to maximize the selectivity to the desired product D. Make sketches (schematics) to support your choices. The rates are in ( $\mathrm{mol} / \mathrm{dm}^{3} . \mathrm{s}$ ), and concentrations are in $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$. Say: $\mathrm{T}_{1}$ and $\mathrm{T}_{2}=300$ and 1000 K.

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{D} & -r_{1 \mathrm{~A}}=10 \exp (-8,000 \mathrm{~K} / T) C_{\mathrm{A}} C_{\mathrm{B}} \\
\mathrm{~A}+\mathrm{B} \rightarrow \mathrm{U} & -r_{2 \mathrm{~A}}=100 \exp (-1,000 \mathrm{~K} / T) C_{\mathrm{A}}^{12} C_{\mathrm{B}}^{32}
\end{array}
$$

Q4 [Marks 15] The endothermic liquid-phase elementary reaction $\mathrm{A}+\mathrm{B} \rightarrow 2 \mathrm{C}$ proceeds, substantially, to completion in a single steamjacketed, continuous-stirred reactor. From the following data, calculate the steady-state reactor temperature: Reactor volume: 125 gal; Steam jacket area: $10 \mathrm{ft}^{2}$; Jacket steam: 150 psig ( $365.9^{\circ} \mathrm{F}$ saturation temperature); Overall heat-transfer coefficient of jacket, $U$ : 150 Btu/h.ft ${ }^{2}$. ${ }^{\text {F F }}$; Agitator shaft horsepower: 25 hp ; Heat of reaction, $\Delta H^{0} \mathrm{Bx}=+20,000 \mathrm{Btu} / \mathrm{lb} \mathrm{mol}$ of A (independent of temperature).

|  | Component |  |  |
| :--- | :---: | :--- | :---: |
|  | $A$ | $B$ | $C$ |
| Feed $(\mathrm{lbmol} / \mathrm{hr})$ | 10.0 | 10.0 | 0 |
| Feed temperature $\left({ }^{\circ} \mathrm{F}\right)$ | 80 | 80 | - |
| Specific heat $\left(\mathrm{Btu} / \mathrm{lb} \mathrm{mol} \cdot{ }^{\circ} \mathrm{F}\right)^{*}$ | 51.0 | 44.0 | 47.5 |
| Molecular weight | 128 | 94 | 222 |
| Density $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$ | 63.0 | 67.2 | 65.0 |

"Independent of temperature.

Q5 [Marks 20] The following reactions take place on a nickel catalyst (spherical particles):
$\begin{array}{ll}\text { Overall reaction } & : A+B \rightarrow C \\ \text { Adsorption } & : A+N i \leftrightarrow A . N i \\ & B+N i \leftrightarrow B . N i \\ \text { Reaction } & : A . N i+B . N i \rightarrow C+2 N i\end{array}$
Determine the rate determining step (RDS) and rate of formation of $\mathrm{C}\left(r_{C}\right)$ in consistent with the experimental data. $(1$ mole $=6.023 \mathrm{x}$ $10^{23}$ molecules).

Figure (RHS): A plot of the experimental (formation) rate of $C$ ( $r_{C}$ ) with $K_{B} P_{B}=10$. ( $K_{B}=$ Adsorption constant of B, $P_{B}=$ partial pressure of $B, P_{A}=$ partial pressure of A)

Q6 [Marks 20] The flow through a reactor is $10 \mathrm{dm}^{3} / \mathrm{min}$. A pulse test gave the concentration measurements at the outlet as given in the table to your right:
(a) Plot the external age distribution $E(t)$ as a function of time.
(b) What are the mean residence time $t_{m}$, and the variance, $\sigma^{2}$ ?


| $t(\min )$ | $c \times 10^{5}$ | $t(\mathrm{~min})$ | $c \times 10^{5}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 15 | 238 |
| 0.4 | 329 | 20 | 136 |
| 1.0 | 622 | 25 | 77 |
| 2 | 812 | 30 | 44 |
| 3 | 831 | 35 | 25 |
| 4 | 785 | 40 | 14 |
| 5 | 720 | 45 | 8 |
| 6 | 650 | 50 | 5 |
| 8 | 523 | 60 | 1 |
| 10 | 418 |  |  |

END

