PART- A: Write final answers only.

7.	A liquid phase reaction is to be carried out under isothermal conditions. The reaction as a function of conversion has been determined experimentally and is shown in figure below. What choice of reactor of combination of reactors will require the minimum overall reactor volume, if a conversion of 0.9 is desired? (A) CSTR followed by a PFR (B) PFR followed by a CSTR (C) CSTR followed by a PFR followed by CSTR (D) PFR followed by a CSTR followed by a PFR
8.	The liquid phase reaction $\mathrm{A} \rightarrow$ products is carried out at constant temperature in a CSTR + PFR) and gives a overall conversion of 95%. The CSTR has a volume of 75 L . Pure A is fed to the CSTR at a concentration $\mathrm{CA}_{0}=2 \mathrm{~mol} / \mathrm{L}$ and a volumetric flow rate of $4 \mathrm{~L} / \mathrm{min}$. The kinetics of the reaction given by $-r_{A}=0.5 C_{A}^{2}$. The conversion achieved by the CSTR is \qquad
9.	In the above arrangement, The volume of the PFR required (in liter) is
10.	Reactant R forms three products X, Y, and Z irreversibly, as shown figure. The reaction rates are given by $r_{x}=k_{1} C_{R}, r_{y}=k_{2} C_{R}^{1.5}, r_{z}=$ $k_{3} C_{R}$. The activation energies for the formation of X . Y and Z are 40, 40 and $5 \mathrm{~kJ} / \mathrm{mol}$, respectively. The pre-exponential factors for all reactions are nearly the same. The desired conditions for maximizing the yield of X are \qquad (A) high temperature, high concentration of R (B) low temperature, low concentration of R (C) low temperature, high concentration of R (D) high temperature, low concentration of R
11.	Develop ignition and extinction cure from the figure. Indicate the points clearly (numbers) with legends of X\& Y axis.

17.	Write down the chemical reactions occurring on a three-way catalyst for an engine exhaust.
18.	An impulse tracer input has been given separately for an ideal PFR, ten ideal CSTRs in series, and one ideal CSTR. Draw the corresponding $E(t)$ versus time responses on a single plot. Mark the type of reactors in the plot.
19.	ER: Eley Rideal, LH: Langmuir. θ_{A} : fractional coverage, r: rate. Why $E R>L H$ at high θ_{A} ? assume the overall reaction is A+ B= C
20.	Is it possible to eliminate the internal resistances completely for a heterogeneous catalytic reaction? If Yes/ No. and write the expression to check the internal resistances.
Define closed-closed and open-open vessel boundary conditions for one-parameter model.	

22.	Draw a schematic of the radial flow-packed bed reactor. Indicate the flow directions and advantages over other configurations.
23.	The overall rates of an isothermal catalytic reaction using spherical catalyst particles of diameter 1 mm and 2 mm are $\mathrm{r}_{\mathrm{A} 1}$ and $\mathrm{r}_{\mathrm{A} 2}$ (in $\mathrm{mol} /(\mathrm{kg}$ catalyst- h), respectively. The other physical properties of the catalyst particles are identical. If pore diffusion resistance is very high, the ratio $\mathrm{r}_{\mathrm{A} 2} / \mathrm{r}_{\mathrm{A} 1}$ is \qquad
24.	Write the residence distribution expression for a series of combinations of CSTR-PFR and PFR-CSTR ideal reactors (where τ s is the space-time of the CSTR, and $\tau \mathrm{p}$ is the space-time of the PFR). Additionally, comment on the conversions when a first-order \& other than first order reactions occurs in these combinations.
25.	What are the inferences from the following plot? (S_{0} and S_{1} are stabilities of zero and first-order reactions)
26.	Find the first-order rate constant for the disappearance of A in the gas reaction $2 A \rightarrow R$ if, on holding the pressure constant, the volume of the reaction mixture, starting with $80 \% \mathrm{~A}$, decreases by 20% in 3 min .

Note: Make the appropriate assumptions by clearly stating them, if necessary

1. An elementary liquid phase reaction $P \Leftrightarrow Q$ is carried out in an ideal flow reactor. The rate of consumption of P is given by $-r_{P}=C_{p}-0.5 C_{Q}$. The feed contains only the reactant P at a concentration of $1 \mathrm{~mol} \mathrm{lit}{ }^{-1}$. Calculate the space-time/ time required to achieve 75% of the equilibrium conversion for a) PFR, b) CSTR, c) batch reactor.
2. Normal butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, is to be isomerized to iso- butene in a plug-flow reactor ($n-\mathrm{C}_{4} \mathrm{H}_{10} \leftrightarrow i-\mathrm{C}_{4} \mathrm{H}_{10}$) Isobutane is a valuable product that is used in the manufacture of gasoline additives. The reaction is to be carried out adiabatically in the liquid phase under high pressure using essentially trace amounts of a liquid catalyst which gives a specific reaction rate of $31.1 \mathrm{~h}^{-1}$ at 360 K . Calculate the PFR volume necessary to process $163 \mathrm{kmol} / \mathrm{h}$ at 70% conversion of a mixture $90 \mathrm{~mol} \% \mathrm{n}$-butane and $10 \mathrm{~mol} \%$ i-pentane, which is considered an inert. The feed enters at 330 K. (Hint: Levenspiel plot may be useful)

Data: $\Delta H_{R X}=-6900 \mathrm{~J} / \mathrm{mol}$-butane, $E=65700 \mathrm{~J} / \mathrm{mol}, K_{C}=3.03$ at $60^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{AO}}=9.3 \mathrm{kmol} / \mathrm{dm}^{3}, \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ Specific heats: n -butane: 141 , i-butane: 141 , i-pentane $=161 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.
This equation may be useful:

$$
X=\frac{\sum \Theta_{i} \widetilde{C}_{P i}\left(T-T_{i 0}\right)}{-\left[\Delta H_{R x}^{o}\left(T_{R}\right)+\Delta \hat{C}_{P}\left(T-T_{R}\right)\right]}
$$

3. Consider the overall reaction $A+B \Leftrightarrow C$. A possible catalyst material contains two different types of reactive sites, X and Y . Both A and B adsorb on X and Y , but the reaction proceeds only if A adsorbs on X and B on Y. The following mechanism describes this reaction:

$$
\begin{aligned}
& A+X=A \cdot X \\
& A+Y=A \cdot Y \\
& B+X=B \cdot X \\
& B+Y=B \cdot Y \\
& A \cdot X+B \cdot Y \rightarrow C+X+Y
\end{aligned}
$$

a. What is the production rate of C if Reaction 5 is irreversible and Reactions $1-4$ reach equilibrium? Hint: you can assume you know the monolayer coverage amounts of both the X and Y available sites. Total free sites available at time zero are $C_{T X}, C_{T Y}$.
b. If the equilibrium constants for Reactions 1-4 are of the same order of magnitude, what happens to the production rate of C if very large or very small ratios of A to B are feed to the reactor?
(Hint: $\mathrm{C}_{\mathrm{Tx}}=\mathrm{C}_{\mathrm{A} . \mathrm{X}}+\mathrm{C}_{\mathrm{B} . \mathrm{X}}+\mathrm{C}_{\mathrm{SX}}, \mathrm{C}_{\mathrm{TY}}=\mathrm{C}_{\mathrm{A} . \mathrm{Y}}+\mathrm{C}_{\mathrm{B} . \mathrm{Y}}+\mathrm{C}_{\mathrm{SY}}$, where C_{tX} total site balance of X , Csx is the vacant sites in X)
4. A specific spherical porous catalyst with a pellet diameter of $1 / 8$ in. has a Thiele modulus of 0.5 for a first-order reaction and gives 90% conversion in a packed bed reactor. It is proposed to replace this catalyst by the exact same catalyst but with pellets of $1 / 4$ or $1 / 2$ in. to reduce the pressure drop? How will the conversion change with these catalysts? [Hint: $\Phi=\mathrm{R} \sqrt{\frac{k_{1}^{11} S_{a} \rho_{c}}{D e}}$ and $\eta=\frac{\text { rate }_{o b s}}{\text { rate }_{\text {intrinsic }}}$]
5. A first order reaction $A \rightarrow B$ is carried out in a 10 cm dia tubular reactor with 6.36 m in length.
$\mathrm{k}=0.25 \mathrm{~min}^{-1}$. The results of the tracer test carried out on this reactor are provided.

$\mathrm{t}(\mathrm{min})$	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{C}(\mathrm{mg} / \mathrm{L})$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Calculate the conversion i) closed vessel dispersion model; ii) PFR; iii) Single CSTR; iv) Tanks in series

$$
X=1-\frac{4 q \exp \left(\mathrm{Pe}_{r} / 2\right)}{(1+q)^{2} \exp \left(\mathrm{Pe}_{r} q / 2\right)-(1-q)^{2} \exp \left(-\mathrm{Pe}_{,} q / 2\right)} \quad \text { where } q=\sqrt{1+4 \mathrm{Da}^{2} / \mathrm{Pe}_{r}}
$$

6. Consider the aqueous reactions

$$
\begin{array}{cl}
\stackrel{d C_{\mathrm{R}}}{d t}=1.0 C_{\mathrm{A}}^{1.5} C_{\mathrm{B}}^{0.3}, \mathrm{~mol} / \text { liter } \cdot \mathrm{min} \\
\mathrm{~A}+\mathrm{B}, \text { desired } & \frac{d C_{\mathrm{s}}}{d t}=1.0 C_{\mathrm{A}}^{0.5} C_{\mathrm{B}}^{1.8}, \mathrm{~mol} / \text { liter } \cdot \mathrm{min}
\end{array}
$$

For 90% conversion of A find the concentration of R in the product stream. Equal volumetric flow rates of the A and B streams are fed to the reactor, and each stream has a concentration of $20 \mathrm{~mol} / \mathrm{liter}$ of reactant. The flow in the reactor follows.
(a) Plug flow
(b) Mixed flow
(c) Plug flow with side entries of B

ALL THE BEST

