BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 First Semester 2016-2017
 CHE F313 Separation Processes - II
 Mid-Semester Test

Date: 04.10.2016
Maximum Marks: 90
Note: The question paper consists of two parts: Part A (Closed-Book) and Part B (Open Book). Part B question paper can be collected only after submission of Part A answer sheet.

> PART - A

Time: 11:00-11:30 A.M.
(Closed-Book)
Marks: 40

1. Give precise answers to the following questions.
a. Define humid volume and derive its expression.
b. Define the number of transfer units in a dryer? In case of air-water system and high liquid content in solid during drying, derive the expression for number of transfer unit. What is its range for an economic operation?
c. Draw and explain the drying curve for non-porous solids with proper justification.
d. What are the parameters kept constants during the scale up of an adsorber from laboratory scale to large scale? Justify.
e. Describe the mechanism for the transport of gases through dense polymer membranes. How will you achieve the high membrane selectivity?

$$
[5 \times 3=15 \text { Marks }]
$$

2. (a) Derive the expression for total drying time.
(b) Consider a drying operation for solid loading (dry basis) of $50 \mathrm{~kg} / \mathrm{m}^{2}$ with a constant drying rate of $5 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~h}$. The falling rate of drying is linear with moisture content. Calculate the drying time (in hrs.) required to reduce an initial moisture content of 25% (wet basis) to a final moisture content of 2% (wet basis). The critical moisture and equilibrium moisture contents on dry basis are 0.1 and 0.005 respectively.

$$
[10+5=15 \text { Marks }]
$$

3. Dialysis is being considered to recover a product A with molecular weight 150 from a dilute aqueous stream. Predict the initial flux of A (in $\mathrm{g} / \mathrm{cm}^{2}$.s) if the membrane has a porosity of 45%, a mean pore size of $0.05 \mu \mathrm{~m}$, molecular size $7.81 \AA$ and a thickness of $30 \mu \mathrm{~m}$. The concentration of A in feed solution is $0.01 \mathrm{~g} / \mathrm{cm}^{3}$. Neglect boundary layer resistances and assume pure water on the product side. Given diffusivity, $\mathrm{D}_{\mathrm{A}}=6.93 \times 10^{-6}$ $\mathrm{cm}^{2} / \mathrm{s} ; \tau=2.0$; factor $\mathrm{F}=0.94$.

Time: 11.30 - $\mathbf{1 2 . 3 0}$ P.M. PART - B
 Marks: 50
 (OPEN BOOK)

Note: 1. Answer in separate answer book.
2. Only Text Book and Hand-written Class-Notes are allowed.
3. Photocopy (Xerox) of Class-Notes is not allowed.

1. A continuous counter-current dryer is used to dry 425.6 kg dry solid $/ \mathrm{h}$ containing 0.035 kg total moisture $/ \mathrm{kg}$ dry solid to a value of 0.0017 kg total moisture $/ \mathrm{kg}$ dry solid. The granular solid enters at $25^{\circ} \mathrm{C}$ and leaves at $60^{\circ} \mathrm{C}$. The heating medium is air which enters at $84.2^{\circ} \mathrm{C}$, has a humidity of $0.0175 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air and leaves at $32.8^{\circ} \mathrm{C}$. Calculate the air flow rate and the outlet humidity, assuming the heat losses from the dryer to be $9300 \mathrm{~kJ} / \mathrm{h}$. The constant heat capacity of dry solid is $1.465 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. The value of latent heat of water at $0^{\circ} \mathrm{C}$ is $2501 \mathrm{~kJ} / \mathrm{kg}$. The specific heat of dry air and water vapor are 1.00 and $2.01 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ respectively.
2. Using molecular sieves, moisture was removed from N_{2} gas in a packed bed at 301 K . The column height was 26.8 cm , with the bulk density of the solid being equal to $712.8 \mathrm{~kg} / \mathrm{m}^{3}$. The initial water concentration of the solid was $0.01 \mathrm{~kg} / \mathrm{kg}$ of dry solid and the mass velocity of nitrogen gas was $4052 \mathrm{~kg} / \mathrm{m}^{2}$.h. The initial moisture concentration of the gas was $c_{0}=926 \times 10^{-6} \mathrm{~kg}$ per kg of dry gas. The breakthrough data are as follows:

Time (h)	0	9	9.2	9.6	10	10.4	10.8	11.25	11.5	12	12.5	12.8
Concentration (c), $\frac{\mathrm{kg} \mathrm{H}_{2} \mathrm{O}(\mathrm{v})}{\mathrm{kg} \mathrm{N}_{2}} \times 10^{6}$	<0.6	0.6	2.6	21	91	235	418	630	717	855	906	926

A value of $\mathrm{c} / \mathrm{c}_{0}=0.02$ is desired at the break point. Find the break point, the fraction of total capacity used up to the break point, the length of unused bed and the saturation loading capacity of the solid. For a proposed column length of 40 cm , calculate the break point time and the fraction of total capacity used.

