Birla Institute of Technology and Science, Pilani Semester I Session: 2023-24 CHE F313 Separation Process-II Mid-Semester Test

Date: 11/10/2023 (FN1)

Full Marks: 90

Closed Book

Instructions: *Answer all parts of a question together. *State and justify if you make any assumptions. *Clearly write the nomenclature used. *Your answers must include appropriate units. *Clearly mention the question number. * Be to the point and specific. * No exchange of calculators is allowed. *Refer to the reference booklet for the formulas and values.

1. A solar dryer was used to dry a sample of wet solid from a free moisture content of 0.4 (kg moisture/kg dry solid) to 0.04 (kg moisture/kg dry solid). Weight of the dry solid is 500 kg and area of the top drying surface is 20 m². It is estimated its critical free moisture content is 0.2 (kg moisture/kg dry solid), while constant drying rate is 1.5 kg moisture/h. m². For the other period, following data points of rate versus free moisture content are available:

Moisture Content (kg H ₂ O/kg dry solid)	Rate (kg H ₂ O/h. m^2)
0.2	1.5
0.15	1.2
0.1	0.9
0.07	0.7
0.05	0.4
0.04	0.3

Calculate the total time (in hours) required for drying the sample by the solar dryer. [20]

2. Feed, containing mixture of two ores (Ore A and Ore B) must be separated by a hydraulic classifier, using water (density: 1000 kg/m^3) under free and laminar settling conditions. Finally, the feed was separated into three size fractions containing (i) pure ore A, (ii) pure ore B and (iii) mixture having particles of ore A and ore B. Specific gravity of ore A is 8, while that of ore B is 3. Size analysis of the feed reveals that it lies in the range between 5 µm and 20 µm. Assuming the particles to be spherical, find the size ranges of the two materials, i.e., ore A and B in those three fractions, i.e., (i), (ii) and (iii). **[20]**

3. Consider the diffusion of an organic solvent (molecular weight: 46) in air (diffusivity: 1.38×10^{-5} m²/s). Initially, air is kept at 303 K and does not contain any solvent. The properties of air which are known at 303 K are as follows- density: 1.165 kg/m^3 ; viscosity: $1.85 \times 10^{-5} \text{ Ns/m}^2$; specific heat capacity: 1.006 kJ/kg. K; thermal conductivity: 0.025 W/m. K. Heat of vaporization of the organic solvent is 42.4 kJ/mol. Establish an equation between the wet bulb temperature and the vapor pressure of the organic solvent. Also, estimate its wet bulb temperature at 2 kPa and 4 kPa of vapor pressure. **[20]**

4. Define the following terms with proper mathematical notations, wherever possible: (i) Sphericity, (ii) Mixing index, (iii) Humidity, (iv) Dew Point and (v) Free Moisture [2×5=10]

5. A crusher (efficiency of 30%) and a grinder (efficiency unknown) are placed in series, which draw power from the same source. 10 tonnes (1 tonne=1000 kg) of an ore material were reduced to fine powder using this series connection of crusher and grinder in an hour. Surface area of this ore is 5 m²/kg, while that of the product from the crusher and grinder are 150 m²/kg and 1000 m²/kg, respectively. The power required by the source is 50 kW. Assuming the Rittinger's number of this ore is 100 m²/kJ, find the efficiency of the grinder. **[10]**

6. During screening analysis of a powdered material, it was observed that its size distribution follows a straight-line trend against weight percentage. For example, 2 wt.% of the sample has an average size of 2 μ m, while 90 wt.% of the sample has an average size of 95 μ m. Using this data, calculate the Sauter mean diameter of the powdered material. Consider calculating various average size for the interval between 10 wt.% and 100 wt.%, to arrive at the final answer. **[10]**

All the best 🌢 Advance wishes for the festive season ahead 😊	
Necessary Equations	
$t = \frac{Ms}{A} \int_{X_1}^{X_2} \frac{dX}{R}$	
$\frac{D_1}{D_2} = \sqrt{\frac{\rho_2 - \rho_f}{\rho_1 - \rho_f}}$	
$\frac{\mathcal{H} - \mathcal{H}w}{T - Tw} = -\frac{Cp}{\lambda w} (\frac{Sc}{Pr})^m$	
$[m=\frac{2}{3}]$	
$Saturation Humidity = \frac{Molecular Weight of Solvent}{Molecular Weight of Air} \left(\frac{Vapor Pressure of the Solvent}{Atmospheric Pressure-Vapor Pressure of the solvent}\right)$	
$\frac{P}{m} = K_R \left[\frac{1}{\overline{D}_p} - \frac{1}{\overline{D}_f}\right]$	
$\overline{D_s} = \frac{1}{\sum_{i=1}^{n} \frac{x_i}{\overline{D_{p_i}}}}$	
Symbols have their usual significance	