# Birla Institute of Technology and Science, Pilani 

Semester I Session: 2023-24
CHE F313 Separation Process-II
Mid-Semester Test
Date: 11/10/2023 (FN1)
Full Marks: 90

## Closed Book


#### Abstract

Instructions: *Answer all parts of a question together. *State and justify if you make any assumptions. *Clearly write the nomenclature used. *Your answers must include appropriate units. *Clearly mention the question number. * Be to the point and specific. * No exchange of calculators is allowed. *Refer to the reference booklet for the formulas and values.


1. A solar dryer was used to dry a sample of wet solid from a free moisture content of $0.4(\mathrm{~kg}$ moisture $/ \mathrm{kg}$ dry solid) to 0.04 ( kg moisture $/ \mathrm{kg}$ dry solid). Weight of the dry solid is 500 kg and area of the top drying surface is $20 \mathrm{~m}^{2}$. It is estimated its critical free moisture content is $0.2(\mathrm{~kg}$ moisture $/ \mathrm{kg}$ dry solid), while constant drying rate is 1.5 kg moisture $/ \mathrm{h} . \mathrm{m}^{2}$. For the other period, following data points of rate versus free moisture content are available:

| Moisture Content $\left(\mathrm{kg} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}\right.$ dry solid $)$ | Rate $\left(\mathrm{kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{h} . \mathrm{m}^{2}\right)$ |
| :--- | :--- |
| 0.2 | 1.5 |
| 0.15 | 1.2 |
| 0.1 | 0.9 |
| 0.07 | 0.7 |
| 0.05 | 0.4 |
| 0.04 | 0.3 |

Calculate the total time (in hours) required for drying the sample by the solar dryer. [20]
2. Feed, containing mixture of two ores (Ore A and Ore B) must be separated by a hydraulic classifier, using water (density: $1000 \mathrm{~kg} / \mathrm{m}^{3}$ ) under free and laminar settling conditions. Finally, the feed was separated into three size fractions containing (i) pure ore A, (ii) pure ore B and (iii) mixture having particles of ore $A$ and ore $B$. Specific gravity of ore $A$ is 8 , while that of ore $B$ is 3. Size analysis of the feed reveals that it lies in the range between $5 \mu \mathrm{~m}$ and $20 \mu \mathrm{~m}$. Assuming the particles to be spherical, find the size ranges of the two materials, i.e., ore A and B in those three fractions, i.e., (i), (ii) and (iii). [20]
3. Consider the diffusion of an organic solvent (molecular weight: 46) in air (diffusivity: $1.38 \times 10^{-}$ ${ }^{5} \mathrm{~m}^{2} / \mathrm{s}$ ). Initially, air is kept at 303 K and does not contain any solvent. The properties of air which are known at 303 K are as follows- density: $1.165 \mathrm{~kg} / \mathrm{m}^{3}$; viscosity: $1.85 \times 10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$; specific heat capacity: $1.006 \mathrm{~kJ} / \mathrm{kg}$. K; thermal conductivity: $0.025 \mathrm{~W} / \mathrm{m}$. K. Heat of vaporization of the organic solvent is $42.4 \mathrm{~kJ} / \mathrm{mol}$. Establish an equation between the wet bulb temperature and the vapor pressure of the organic solvent. Also, estimate its wet bulb temperature at 2 kPa and 4 kPa of vapor pressure. [20]
4. Define the following terms with proper mathematical notations, wherever possible: (i) Sphericity, (ii) Mixing index, (iii) Humidity, (iv) Dew Point and (v) Free Moisture [2×5=10]
5. A crusher (efficiency of $30 \%$ ) and a grinder (efficiency unknown) are placed in series, which draw power from the same source. 10 tonnes ( 1 tonne $=1000 \mathrm{~kg}$ ) of an ore material were reduced to fine powder using this series connection of crusher and grinder in an hour. Surface area of this ore is $5 \mathrm{~m}^{2} / \mathrm{kg}$, while that of the product from the crusher and grinder are $150 \mathrm{~m}^{2} / \mathrm{kg}$ and 1000 $\mathrm{m}^{2} / \mathrm{kg}$, respectively. The power required by the source is 50 kW . Assuming the Rittinger's number of this ore is $100 \mathrm{~m}^{2} / \mathrm{kJ}$, find the efficiency of the grinder. [10]
6. During screening analysis of a powdered material, it was observed that its size distribution follows a straight-line trend against weight percentage. For example, $2 \mathrm{wt} . \%$ of the sample has an average size of $2 \mu \mathrm{~m}$, while $90 \mathrm{wt} . \%$ of the sample has an average size of $95 \mu \mathrm{~m}$. Using this data, calculate the Sauter mean diameter of the powdered material. Consider calculating various average size for the interval between $10 \mathrm{wt} . \%$ and $100 \mathrm{wt} . \%$, to arrive at the final answer. [10]

All the best
Advance wishes for the festive season ahead $;$

## Necessary Equations

$$
\begin{gathered}
t=\frac{M s}{A} \int_{X_{1}}^{X_{2}} \frac{d X}{R} \\
\frac{D_{1}}{D_{2}}=\sqrt{\frac{\rho_{2}-\rho_{f}}{\rho_{1}-\rho_{f}}} \\
\frac{\mathcal{H}-\mathcal{H} w}{T-T w}=-\frac{C p}{\lambda w}\left(\frac{S c}{P r}\right)^{m} \\
\quad\left[m=\frac{2}{3}\right]
\end{gathered}
$$

Saturation Humidity $=\frac{\text { Molecular Weight of Solvent }}{\text { Molecular Weight of Air }}\left(\frac{\text { Vapor Pressure of the Solvent }}{\text { Atmospheric Pressure-Vapor Pressure of the solvent }}\right)$

$$
\begin{gathered}
\frac{P}{m}=K_{R}\left[\frac{1}{\bar{D}_{p}}-\frac{1}{\overline{D_{f}}}\right] \\
\overline{D_{s}}=\frac{1}{\sum_{i=1}^{n} \frac{x_{i}}{\overline{D_{p \iota}}}}
\end{gathered}
$$

## Symbols have their usual significance

