BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

Environmental Pollution Control (CHE F411)

Comprehensive Examination

Date - 01/12/2016	Maximum Time – 3 Hrs	Marks – 40
	Part – A (Closed Book)	[15×1]

- 1. With temperature altitude profile and plume diagram explain four types of plume behaviour under different meteorological conditions. [4]
- Mention three techniques for measurement of particulate matter in air. Briefly explain the procedure of particulate matter monitoring using hi volume sampler. [3]
- 3. How the following physical water qualities are measured: [4]

(i) Total Suspended Solids (ii) Total Dissolved Solids

(iii) Colour (iv) Odour

- 4. The influent suspended solids concentration to a primary settling tank is 450 mg/l. The average flow rate is 0.1 m³/s. The suspended solids removal efficiency is 60%. Determine the suspended solids concentration in the overflow and the quantity of sludge produced per day. [3]
- 5. Explain the different phases of bacterial growth? Explain the Monod equation describing the specific growth rate of microorganisms. [4]
- 6. Why sludge digestion is necessary in the waste water treatment? Describe the process of anaerobic method for sludge digestion. [4]
- Explain the different process modifications in the method of air supply to the aeration tank of the activated sludge process? [3]
- 8. A laboratory solution containing 0.5 μ Ci/L of ³²P is to be disposed of. How long must the radioisotope be held to meet the allowable discharge activity of 9 x 10⁻⁵ μ Ci/mL? assume T_{1/2} = 14.3 days. [4]
- Differentiate between continuous, intermittent and impulsive noise. Mention two effects of noise on human health and two methods of source correction to minimize noise.
 [4]
- 10. Explain the L_N and L_{eq} method of noise rating. Traffic noise data are shown in the table below: [7]

Time(s)	10	20	30	40	50	60	70	80	90	100
dB	71	75	70	78	80	84	76	74	75	74

Compute L₈₀ and L_{eq}

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI Environmental Pollution Control (CHE F411) Comprehensive Examination

Part – B (Open Book)

1. A settling chamber is installed in a plant for removal of particulate matter. Determine the overall collection efficiency of the settling chamber under the following operating conditions assuming laminar flow: [12]

Chamber dimension: $12m \times 2.5 m \times 15 m$; Particle specific gravity: 2.65 Volumetric flow rate of contaminated air stream: $70m^3/s$

Flue gas temperature and pressure: 120° C and 1 atm

ide gus temperature and press	ui 0. 1	10 0	und 1	uum					
Avg Particle diameter (µm)	10	25	35	45	55	65	75	85	94
Inlet wt%	2.7	6.9	9.4	10.5	10.5	9.5	7	9.5	34

2. The BOD results given below are observed on a sample of waste water at 20° C:

T, days	0	1	2	4	6	8	10
BOD, mg/l	0	7	12	19	22	25	27

This waste water is discharged at 25° C to a stream having a reaeration rate of $0.6d^{-1}$. The DO deficit of the mixture of stream water and wastewater at the point of reference is 3 mg/l. Calculate:

- i. The DO deficit at a point one day distant from the point of reference
- ii. The critical DO deficit
- iii. The critical time

Assume a temperature coefficient value of 1.056

[4+2+2]

3. The results of a settling test are as follows:

0								
Time (min)	0	60	80	100	130	200	240	420
Conc (mg/l)	300	200	180	170	160	110	80	30

What is the percentage removal of particles in a 4 m deep sedimentation tank if the hydraulic loading rate is $20 \text{ m}^3/\text{m}^2$ day? Assume Type I settling. [6]

4. A secondary clarifier is to be designed to produce an underflow concentration of 25000 mg/l from an influent with mixed liquor solids content of 4000 mg/l. The waste water flow rate is 50 l/s. The following data were obtained from a settling test in a 100 m cylinder:

Time (min)	0	2	4	6	8	10	14	18	22	26	30
Interface height (cm)	100	87	75	63	53	46	36	29	25	23	20
loulate the required alar	values the meaning clamifier and										

Calculate the required clarifier area.

5. The effluent from the secondary clarifier in an effluent treatment plant has to meet the standard of BOD₅ of 30 mg/l and 30 mg/l suspended solids. The effluent flow rate from the primary treatment process is 0.03 m^3 /s and this effluent has a BOD₅ of 250 mg/l. with the following information, calculate the required volume of the aeration tank.

 BOD_5 of the suspended solid is 80% of the allowable suspended solids concentration. Growth constant values are: Ks = 100 mg/l BOD5; k_d = 0.06d⁻¹, $\mu_m = 10d^{-1}$; Y = 0.8. The biomass concentration in the aeration tank is 3000 mg/l. [8]

[6]