BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

Environmental Pollution Control (CHE F411)

Mid Semester Test Maximum Marks - 20

Part - A (Closed Book)

1.	In which	years	the A	Air A	et and	l the	Water	Act	were	enacted	in	India?	Ment	tion	two
	functions	of the	centi	ral pol	lution	contr	ol boa	ırd ar	nd two	functio	ns	of the	state p	ollu	ıtion
	control board as per the Air Act.													[3]	

- Concentration of nitrogen dioxide at a certain location was monitored as 160 μg/m³ at 25°C and 1 atm pressure. Express this concentration in parts per billion. [4]
- 3. Consider the following temperature readings: ground level, 25°C; 400m, 23°C; 800 m, 25°C; 1000 m, 26°C. If a 70-m stack releases a plume with a temperature of 30°C, how high does the plume rise? [3]
- 4. Briefly explain the procedure of particulate matter sampling using tape sampler. [3]
- 5. mention the different source correction methods for controlling air pollution. [2]
- 6. Explain the different mechanisms by which particles are captured by a packed filter. [2]
- 7. What is biochemical oxygen demand? State the different processes which affect the dissolved oxygen content in water. [3]

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

Environmental Pollution Control (CHE F411)

Mid Semester Test

Maximum Marks - 40

Part - B (Open Book)

1. A settling chamber is installed in a plant for removal of particulate matter. Determine the overall collection efficiency of the settling chamber under the following operating conditions assuming laminar flow:

[10]

Chamber dimension: $11m \text{ (length)} \times 3m \text{ (width)} \times 15m \text{ (height)};$

Particle specific gravity: 2.7

Volumetric flow rate of contaminated air stream: 70m³/s Flue gas temperature and pressure: 90^oC and 1 atm

Avg Particle diameter (μm)	10	25	35	45	55	65	75	85	94
Inlet wt%	1.7	7.9	9.4	10.5	12.5	9.5	7	7.5	34

2. A power plant burns 20 tonnes/h of coal that contains 3% sulfur and discharges the combustion products through a stack 200 m high and 1.0 m inside diameter. A weather station anemometer located 10 m above the ground measures the wind speed at 3.0 m/s. Other pertinent informations are as follows:

Air temperature and pressure: 15°C and 1 bar

Stack gas velocity: 10 m/s; Stack gas temperature: 150°C

Atmospheric conditions are moderately stable.

Determine the ground level concentration of SO₂ in parts per million (PPM) at a distance 2 km downwind from the stack along the plume axis. [15]

3. A municipal wastewater treatment plant discharges 19000 m³/day of treated wastewater to a stream. The wastewater has a BOD₅ of 30 mg/l with a k₁ of 0.23 d¹¹. The temperature of the wastewater is 27°C and the dissolved oxygen content is 2 mg/l. The stream just above the point of wastewater discharge flows at 0.65 m³/s, has a BOD₅ of 5 mg/l and a DO of 7.2 mg/l. After mixing the stream and wastewater flows at a velocity of 0.5 m/s and the reaeration constant is 0.45 d¹¹.

What is the oxygen level of the stream after 2 days?

What is the critical DO content and at what distance downstream of the discharge point does it occur? [15]