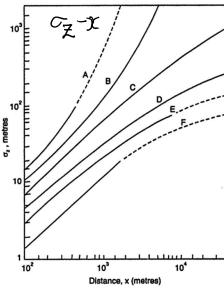

CHE F411 – Environmental Pollution Control MID SEM Regular Examination Total Marks: 60 Duration: 90 minutes

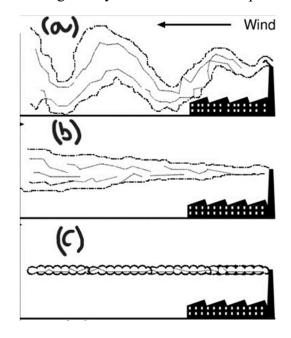

Your name: Date: 12/10/2023

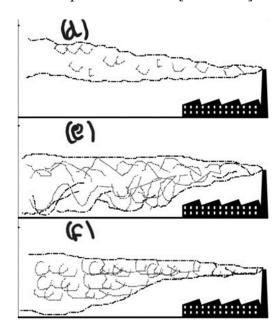
Important: <u>Please note that there are 5 question in this exam.</u> This is a <u>Closed book</u> exam. Please READ THE QUESTIONS CAREFULLY, AND KNOW WHAT IS BEING ASKED. No electronic gadgets except non-programmable calculators are allowed. You should carry all necessary items such as pen, pencil, eraser, calculators for taking the test. Answer all questions CLEARLY, TO THE POINT and in such a way that I can understand your answers. <u>Assume any missing data and state your assumption clearly</u>.

Q1. A coal fired power plant is emitting 640 g/s SO₂ from a stack of effective height 300m on a cloudy summer afternoon. An anemometer situated at 10 m height measures the wind speed to be 2.5 m/s. Estimate (a) the ground level concentration of SO₂ in ppm at a distance of 4km from the stack base and (b)The distance from the stack base at which at maximum ground level concentration occurs. The data from the following graphs may be useful. The molecular weight of SO₂ is 64 g/mol and p=0.17. Assume standard temperature and pressure conditions. The following data may be used. [12 marks]

Surface Wind Speed (m/sec) ^d	Sunshine		
	Stronge	Moderate ^e	Slight
<2	Α	A-B	В
2-3	A-B	В	C
3-5	В	В-С	C
5-6	C	C-D	D
>6	С	D	D

Q2. A multi-tray settling chamber handles $0.6 \text{m}^3/\text{s}$ of air at 200°C . There are 8 trays including the bottom surface spaced 0.5 m apart. The chamber is 6 m long and 2 m wide. The viscosity and density of air at 200°C is $25 \mu \text{Pa} \cdot \text{s}$ and 0.745 kg/m^3 , respectively. For particles of density 2000 kg/m^3 and for size $50 \mu \text{m}$, calculate the following [15 marks]


- a) The residence time
- b) The distance settled
- c) Efficiency of collection
- d) Efficiency of collection if air flow rate is increased to 6 m³/s


Q3. Calculate the venturi throat area required to achieve 90% removal of 1.25 μ m radius particle having a density of 1400 kg/m³ for the following air stream and venturi characteristics. The density of air is 1.2 kg/m³ and the viscosity of air is 1.85x10⁻⁵ kg/m-s at the operating conditions. [9 marks]

Gas flow rate = $10 \text{ m}^3/\text{s}$, Droplet diameter = $100 \text{ }\mu\text{m}$, Liquid flow rate = $0.1 \text{ }\text{m}^3/\text{s}$, Venturi Coefficient, K = 200, Cunningham Correction Factor = 1

Formulae: $\eta = 1 - \exp(-KR\sqrt{\psi}), \quad \psi = \frac{C\rho_p v_r (d_p)^2}{18d_d \mu}, \quad v_r = v_{G-VL}$

Q4. For the following plume behaviors, (a) name the plume type and (b) sketch altitude – temperature plot showing clearly the ELR and DALR prevailing for the observed plume behavior. [12 marks]

Q5. The concentrations of various air pollutants in a city are as follows:

- Particulate Matter (PM_{2.5}): 45 μg/m³
- Nitrogen Dioxide (NO₂): 35 ppb (parts per billion)
- Carbon Monoxide (CO): 3 ppm (parts per million)

Determine the (a) AQI based on PM_{2.5} (b) AQI based on NO₂ (c) AQI based on CO and (d) Overall AQI of the city. Assume standard temperature and pressure conditions. The following data may be used. [12 marks]

AQI Category (Range)	$PM_{2.5}$	NO_2	O_3	CO	SO_2
	24-hr	24-hr	8-hr	8-hr	24-hr
Good (0-50)	0-30	0-40	0-50	0-1.0	0-40
Satisfactory (51-100)	31-60	41-80	51-100	1.1 - 2.0	41-80
Moderate (101-200)	61-90	81-180	101-168	2.1 - 10	81-380
Poor (201-300)	91-120	181-280	169-208	10.1 - 17	381-800
Very Poor (301-400)	121-250	281-400	209-748	17.1-34	801-1600
Severe (401–500)	250+	400+	748+	34+	1600+

Note: While CO concentrations are expressed in mg m⁻³; the other pollutants are expressed in μg m⁻³.

Formulae:

$$I_p = [IH_i - IL_o / BPH_i - BPL_o] (Cp - BPL_o) + IL_o,$$

$$\rho_{p} = \frac{M_p y_{ppm} \ X \ 10^3}{24.45}$$