Birla Institute of Technology and Science, Pilani

Semester II Session: 2021-2022
CHE F412 PROCESS EQUIPMENT DESIGN
Comprehensive Examination
Date: 20/05/2022
Full Marks: 80
Duration: 3 hours (120 minutes)

Instructions

- Be to the point, don't write essays
- Please be careful with the units. Wrong units will fetch no credit
- Answer all parts of a question at one place only
- Write assumptions wherever required with proper justifications
- Symbols should have proper nomenclature

1. A tall vertical column 4 m in outside diameter is to be installed as an absorption tower. The available specifications are:

Operating temperature $=160^{\circ} \mathrm{C}$	Operating pressure $=5 \mathrm{~kg} / \mathrm{m}^{2}$
Skirt height $=3.0 \mathrm{~m}$	Insulation thickness $=100 \mathrm{~mm}$
Tray spacing $=0.5 \mathrm{~m}$	Permissible material stress of shell $=1000$ $\mathrm{~kg} / \mathrm{m}^{2}$
Top space disengagement $=1.2 \mathrm{~m}$	Welded joint efficiency $=85 \%$
Weir height $=50 \mathrm{~mm}$	Density of shell material $=7000 \mathrm{~kg} / \mathrm{m}^{3}$
Bottom space separation $=1.8 \mathrm{~m}$	Density of insulation $=500 \mathrm{~kg} / \mathrm{m}^{3}$
Tray loading without liquid $=100 \mathrm{~kg} / \mathrm{m}^{2}$	Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Tray support ring $=45 \mathrm{~mm} \times 45 \mathrm{~mm} \times 11 \mathrm{~mm}$ angles	Overhead vapour pressure line $=280 \mathrm{~mm}$
Corrosion allowance $=2 \mathrm{~mm}$	Weight of ladder $=60 \mathrm{~kg} / \mathrm{m}$
Wind force acting over vent $=200 \mathrm{~kg} / \mathrm{m}^{2}$	Weight of 280 mm outer diameter pipe $=50$ $\mathrm{~kg} / \mathrm{m}$

Assume (i) elliptical head with major to minor axis ratio $=2: 1$; (ii) Thickness of insulation being greater than shell, insulation diameter to be equal to mean diameter of the shell; (iii) Weir height as the height of water in the tray; (iv) Height of one tray can be taken to be as 1 m and (v) cross section of a tray can be assumed to be as circle. Calculate all the stresses and check if 50 m is acceptable height for the tower. Consider internal pressure and upwind side. [20]
2. A self-supported conical roof is to be designed for a cylindrical storage tank of diameter 5 m . The slope of the conical roof is limited to $1: 5$. The roof plates are lap welded with continuous filled weld on the tope side only. Roof is subjected to a superimposed load of $150 \mathrm{kgf} / \mathrm{m}^{2}$. Density of plate material is $7000 \mathrm{~kg} / \mathrm{m}^{3}$. Poisson's ratio $=0.33$; Modulus of elasticity $=2 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$. Using a factor of safety 2,6 and 8 , estimate whether a plate thickness of 10 mm is sufficient for fabrication. Assume that the superimposed load along with the weight of roof per unit area to be the total pressure on roof. $\left(1 \mathrm{~kg} / \mathrm{m}^{2}=1 \mathrm{kgf} / \mathrm{m}^{2}\right)$ [20]
3. Consider a rectangular bar, having dimensions " l ", " b " and " h " as length, breadth, and height under non-stressed condition. When this bar is stressed, the change in dimensions is designated as " $\Delta l ", " \Delta b$ " and " $\Delta h "$ ", respectively. Under stressed conditions, increment in length is accompanied by a decrease in breadth and height of the bar, under consideration. Assume Poisson's ratio as " μ " (the ratio of longitudinal strain to lateral strain) and volumetric strain as " e_{v} " (Ratio of change in volume to original volume). With the help of a neat diagram, derive a relation between volumetric strain $\left(e_{v}\right)$ and Poisson's ratio (μ). (Hint: The final relation should contain additional terms related to applied pressure (P), area of rectangular bar (A) and elastic modulus (E)) [20]
4. A rod 12.5 mm . in diameter is stretched 3.2 mm under a steady load of 10 kN . What stress would be produced in the bar by a weight of 700 N , falling through 75 mm before commencing to stretch, the rod being initially unstressed? Elastic modulus is $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. [10]
5. Write briefly about the following: $(\mathbf{2 . 5} \times \mathbf{4}=\mathbf{1 0})$
(a) Rupture Disc
(b) Tube arrangement patterns in a heat exchanger (Diagrammatic representation necessary)
(c) Type of reaction forces in the design of flange joint
(d) Horizontal and vertical stiffeners
~All the Best; Happy Summer Holidays~

Supplementary Information

Table for standard thickness

\asymp APPENDIX B - STANDARD VALUES

Table B-1 Steel Plates
Thickness : $\quad 5,5.5,6,7,8,9,10,11,12$,
(min) $14,16,18,20,22,25,28$, $32,36,40,45,50,56,63$, 71. 80.

Width: $160,180,200,220,250$,
(mm) 280, 320, 355, 400, 450, $500,560,6: 0,710,800$, $900,1000,1100,1250$, $1500,1600,1800,2000$, 2 200, 2500.

Length : $\quad 6 m-10 m$ easily available.

Table B-2 Strip Steels
Thickness: $\quad 0.8,0.91 .0,1.1,1.2,1.4$,
(mm) $\quad 1.6,1.8,2.0,2.2,2.52 .8$, $3.2,3.5,4.0,4.5$.

Width : $100,110,125,140,160$,
(mm) : $\quad 180,200,220,250,280$,
$320,355,400,450,500$, $560,630,710,800,900$, 1000.

List of important formulas:

$\sigma=\frac{P}{A}\left(1+\sqrt{1+\frac{2 A E h}{P \times L}}\right)$	$E=\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{\text { Steady Load }}{\text { Area }}}{\frac{\text { Change in length }}{\text { Original length }}}$
$\epsilon_{x}=\frac{\Delta L}{L}$	$\epsilon_{y}=\frac{\Delta b}{b}$
$\mu=-\frac{\epsilon_{y}}{\epsilon_{x}}$	Critical Stress $=\frac{P D}{2 t \sin \theta}$
$f_{c}($ critical $)=\frac{E}{\sqrt{3\left(1-\mu^{2}\right)}}\left(\frac{t}{r}\right)$	$r=\frac{D / 2}{\sin \theta}$
$t=\frac{P D_{0}}{2 f J+P}$	$t_{h}=\frac{P D_{0} V}{2 f J}$
$V=\frac{1}{6}\left(2+K^{2}\right)$	$f_{a}=\frac{P D}{4(t-c)}$
Volume of ellipsoid $=\frac{\pi}{6}\left(D_{0}^{3}-D_{i}^{3}\right) \times \rho_{\text {shell }}$	$f_{d x}=\frac{w e i g h t ~ o f ~ s h e l l}{\text { cross }-\sec \text { tion of shell }}$
$f_{d(\text { ins })}=\frac{\pi D_{\text {ins }} t_{\text {ins }} \rho_{\text {ins }}}{\pi D_{m}\left(t_{s}-c\right)}$	$f_{d(\text { liq })}=\frac{\sum \text { liquid weight per unit height }(X)}{\pi D_{m}\left(t_{s}-c\right)}$
$f_{d(a n t)}=\frac{\sum \text { weight of the attachment per unit height }(\mathrm{X})}{\pi D_{m}\left(t_{s}-c\right)}$	$f_{d x}=f_{d s}+f_{d(\text { ins })}+f_{d(l i q)}+f_{d(a t t)}$

Weight of pipe insulation=area of the pipe \times Density \times height of column $=\frac{\pi}{6}\left(D_{0 \text { ins }}^{2}-\right.$ $\left.D_{\text {i ins }}^{2}\right) \times \rho_{\text {shell }}$	
$f_{w x}=\frac{1.4 p_{w} X^{2}}{\pi D_{0}\left(t_{s}-c\right)}$	(a) Internal pressure and upwind side $f_{t \max }=\left(f_{w x} \text { or } f_{s x}\right)+f_{a p}-f_{d x}$
(c) Internal pressure and downwind side $f_{c \max }=\left(f_{w x} \text { or } f_{s x}\right)-f_{a p}+f_{d x}$	Where, $f_{t \text { max }}$ and $f_{c \text { max }}$ maximum tensile and compressive stresses $\begin{aligned} f_{w x} & =\text { stress due to wind load } \\ f_{s x} & =\text { stress due to seismic load } \\ f_{a p} & =\text { axial stress from internal or } \\ & \text { external pressure (uniform } \\ & \text { over the entire height) } \\ f_{d x} & =\text { stress due to dead loads } \end{aligned}$
Number of trays=[(height-1)/tray spacing]+1	

