BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI I CAMPUS

II Semester 2016-2017

CHE F 419: Chemical Process Technology Mid semester test: 11/03/2017 PART-B: Open Book

Time: 30 minutes Max. Marks: 25

1. 2.7 billion lb/stream day of ethylene is produced using commercial grade ethane as feedstock using steam reformer. Ethane arrives in liquid state at 700 psig and 80° F: Reactants & Product specs.

- a. Show what all steps would be needed to complete the design of steam cracker.
- b. Carry out the complete material balance for the given process..
- c. Draw the schematic of steam cracker showing all the inputs & outputs from the cracker.

SNO	Component	Mole %
1.	CH ₄	3
2.	C_2H_6	94
3.	C_3H_8	3
4.	CO ₂	800 ppm
5.	S	Very less in ppm

SN o	Component	Mole %
1.	CH ₄	0.6
2.	C_2H_6	0.4
3.	C_2H_4	99
4.	C_2H_2	<10 ppm
5.	H ₂ S	<5 ppm
6.	CO ₂	<100 ppm

			A	E, kcal/g mole	
Initiation	$C_2H_6 \rightarrow 2CH_3$	(1)	1.0×10^{16}	86	
	$\begin{cases} CH_3 + C_2H_6 \to CH_4 + C_2H_5 \\ C_2H_5 \to C_2H_4 + H \\ H + C_2H_6 \to H_2 + C_2H_5 \end{cases}$	(2)	3.16×10^{8}	10.8	
Propagation	$\left\{ C_2H_5 \cdot \rightarrow C_2H_4 + H \right\}$	(3)	3.98×10^{13}	38	
		(4)	1.25×10^{11}	9.7	
Termination	$\begin{cases} C_2H_5 \cdot + C_2H_5 \cdot \to n - C_4H_{10} \\ C_2H_5 \cdot + C_2H_5 \cdot \to C_2H_6 + C_2H_4 \end{cases}$	(5a) (5b)	2.511×10^{10}	0	
Propylene					
formation	C_2H_5 + $C_2H_4 \rightarrow C_3H_6 + CH_3$	(6)	3.16×10^{9}	19	
	$\begin{bmatrix} C_{2}H_{5}^{\cdot} + C_{2}H_{4} \rightleftarrows 1\text{-}C_{4}H_{9}^{\cdot} \\ 1\text{-}C_{4}H_{9}^{\cdot} \to 2\text{-}C_{4}H_{9}^{\cdot} \\ 2\text{-}C_{4}H_{9}^{\cdot} \to C_{3}H_{6} + CH_{3}^{\cdot} \end{bmatrix}$				
Inhibition	$H^{\cdot} + C_2H_4 \rightarrow C_2H_5^{\cdot}$	(7)	5.0118×10^{10}	-0.8	
	- 1		Units for $A = \sec^{-1}$ for Reactions 1 and 3, and 1.(g mole) ⁻¹ sec ⁻¹ for others.		

Fig. CS-2.1 Free-radical mechanism for ethane cracking. [Reaction 5a can be neglected in terms of product produced and a combined rate constant used, $k_5 = 1.15k_{5a}(1)$. Rate equations in terms of partial pressures may be written using R'T corrections.]

The first-order rate constant for ethane is obtained from Table 10.4, p. 446¹.

$$k_c = 4.717 \times 10^{14} e^{-72.240/R'T}, \text{ sec}^{-1}$$
 (CS-2.1)

where $T = {}^{\circ}K$ or

$$k_p = \frac{k_c}{RT} = \frac{4.717 \times 10^{14}}{RT} e^{-130.032/RT}, \frac{\text{lb mole}}{(\text{atm})(\text{ft}^3)(\text{sec})}$$
 (CS-2.2)

where $T = {}^{\circ}\mathbf{R}$ and $\mathbf{R} = 0.73$.