Birla Institute of Technology and Science, Pilani

Semester I Session: 2017-2018
CHE G523 Mathematical methods in chemical engineering
Mid-semester Test (Closed Book)
Date: 10/10/2017
Maximum Marks: 25
Duration: 90 minutes
Weightage: 25 \%

Q 1
$[4+5+4=13]$
The tempereature variation in a rod of 2 m is given by $\frac{d^{2} T}{d x^{2}}+0.01(20-T)=0$. The value of temperature at $x=0$ is $40^{\circ} \mathrm{C}$ and at 2 m , its value is $200^{\circ} \mathrm{C}$.
a) Apply appropriate finite difference method assuming $\Delta x=0.5 \mathrm{~m}$ and develop the set of algebraic equations and solve them.
b) Convert above equation into a set of first oder equations. Apply the shooting method and solve the set of ODE -IVP using eigne value method.
c) Apply orthogonal collocation method for three internal collocation points and find the temperature profile.

Q 2
The half solid cylinder of 10 cm diameter has $k=20 \mathrm{~W} / \mathrm{m} \mathrm{K}$ and its top surface is exposed to the convection environment at $20^{\circ} \mathrm{C}$ with $h=50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The lower bottom surface is maintained at $300{ }^{\circ} \mathrm{C}$. Using finite difference method by considering Δr of 2.5 cm and $\Delta \theta$ of 45°, find out the temperature profile. Also consider the minimum number of nodal points based on physical symmetry in temperature profile.

Energy Equation for cylindrical coordinates:

$$
\rho \hat{\mathrm{C}}_{p}\left(\frac{\partial T}{\partial t}+v_{r} \frac{\partial T}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta}+v_{z} \frac{\partial T}{\partial z}\right)=k\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right]
$$

Q 3

a) Generate an orthonormal set from the linearly independent set $(2,0,1)^{t},(2,1,3)^{t},(4,1,2)^{t}$ in R^{3} using Gram-schmidt Orthonormalisation process.
b) Using the following symmetric matrix, show that eigen vectors are orthogonal to one another.

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

MATRICES FOR THE ORTHOGONAL COLLOCATION TECHNIQUE (NON-SYMMETRIC)

For $N+2=3$
$X=$

$\mathrm{A}=$| 0 | | |
| ---: | ---: | ---: |
| 0.5 | | |
| 1 | | |
| | | |
| -3 | 4 | -1 |
| -1 | 0 | 1 |
| 1 | -4 | 3 |

$B=$

4	-8	4
4	-8	4
4	-8	4

$N+2=5$
$X=$

0
0.1127
0.5
0.8873

1
$A=$

-13.000	14.788	-2.667	1.878	-1.000
-5.324	3.873	2.066	-1.291	0.676
1.500	-3.228	0.000	3.228	-1.500
-0.676	1.291	-2.066	-3.873	5.324
1.000	-1.878	2.667	-14.788	13.000

84.001	-122.064	58.666	-44.604	24.000
53.239	-73.334	26.667	-13.334	6.762
-6.000	16.667	-21.333	16.667	-6.000
6.762	-13.334	26.667	-73.334	53.239
24.000	-44.604	58.666	-122.064	84.001

