BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 First Semester 2023-2024
 CHE G523 Mathematical Methods in Chemical Engineering
 Mid Semester Exam (Closed Book)

Date: 09.10.2023, 4-5:30 PM
Duration: 90 Min.
Total Marks: 25

- State and justify any assumptions that you make. Nomenclature should be defined properly.

Q. 1 [4*2=8 Marks]

a) Prove the theorem: "The eigenvector u^{i} of a real matrix A corresponding to λ_{i} is orthogonal to the complex conjugate of every eigenvector v^{j} of A^{t} corresponding to an eigenvalue λ_{j} distinct from λ_{i}."
b) Integrate $\frac{d y}{d t}=-3 y$ with initial value $y_{0}=1$ using $h=0.025$ upto $t=0.25$ using explicit Euler technique. Compare with the exact values.
c) Calculate the metrics $d_{1}(u, v), d_{2}(u, v)$, and $d_{\infty}(u, v)$ for $u=\left(\begin{array}{lll}1 & 4 & 6\end{array}\right)^{t}$ and $v=\left(\begin{array}{lll}1 & -2 & 0\end{array}\right)^{t}$
d) Express vector $u=\left(\begin{array}{lll}8 & 10 & 12\end{array}\right)^{t}$ in \mathbf{R}^{3} as a linear combination of basis sets $u^{1}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{t}, u^{2}=$ $\left(\begin{array}{ll}3 & -3\end{array}\right)^{\mathrm{t}}$ and $\mathrm{u}^{3}=\left(\begin{array}{ll}-11 & -8\end{array}\right)^{\mathrm{t}}$
Q. 2 Using the data given below fit a third-degree polynomial using the Lagrangian interpolation formula.

x	1	3	4	6
y	1	5	15	85

The Lagrangian interpolation formula is given by $y(x)=\sum_{j=0}^{n}\left[\prod_{\substack{i=0 \\ i \neq j}}^{n} \frac{\left(x-x_{i}\right)}{\left(x_{j}-x_{i}\right)}\right] y_{j}$
[3 Marks]
Q. 3 Consider linearly independent set $(2,0,1)^{t}(2,1,3)^{t}(4,1,2)^{t}$ in \mathbf{R}^{3}. Generate an orthonormal set using the Gram-Schmidt Orthonormalisation process.
[3 Marks]
Q. 4 Consider the following ODE-IVP

$$
\begin{gathered}
\frac{d y_{1}}{d t}=9 y_{1}+24 y_{2}+5 \cos t-\frac{1}{3} \sin t \\
\frac{d y_{2}}{d t}=-24 y_{1}-51 y_{2}-9 \cos t+\frac{1}{3} \sin t
\end{gathered}
$$

With initial $y_{1}(0)=4 / 3$ and $y_{2}(0)=2 / 3$. Integrate the ODE using the Runge-Kutta algorithm with $\mathrm{h}=0.05$ for 1 step .
[3 Marks]
Fourth order Runge-Kutta algorithm:

$$
\begin{gathered}
y_{n+1}=y_{n}+h\left[\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4}\right] \\
k_{1}=f\left[t_{n}, y_{n}\right] \quad k_{2}=f\left[t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right] \quad k_{3}=f\left[t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{2}\right] \quad k_{4}=f\left[t_{n}+h, y_{n}+h k_{3}\right]
\end{gathered}
$$

Q. 5 Determine the heights h_{1}, and h_{2} in the two-tank network using the eigenvalue method for steady state and transient response. The equations are given by:

$$
\begin{gathered}
\frac{d h_{1}}{d t}=\frac{F_{i}}{A_{1}}-\left(\frac{h_{1}-h_{2}}{R_{1} A_{1}}\right) \\
\frac{d h_{2}}{d t}=\left(\frac{h_{1}-h_{2}}{R_{1} A_{2}}\right)-\left(\frac{h_{2}}{R_{2} A_{2}}\right)
\end{gathered}
$$

Where $F_{i} / A_{1}=1, R_{1} A_{1}=0.5, R_{2} A_{2}=0.5, R_{1} A_{2}=1$
[8 Marks]

~ALL THE BEST~

