BIRLA INSTRITUTE OF TECHNOLOGY \& SCIENCE, PILANI, PILANI CAMPUS DEPARTMENT OF CHEMICAL ENGINEERING

First Semester 2022-23
Mid-Semester Examination (Open Notes)
CHE G558: Chemical Process Optimization
Marks: 30
Date: 01.11.2022
Time: 90 minutes

Note: Make suitable assumptions wherever necessary and write all the steps clearly.

1. (6 Marks) Find the volume of the largest right circular cylinder that can be inscribed inside a sphere of radius R as shown in the following figure.

2. (a) (3 Marks) Sketch the feasible region for the given constraints.

$$
\begin{aligned}
& g_{1}(x)=x_{1}-x_{2}^{2}-25 \geq 0 \\
& g_{2}(x)=x_{1}-x_{2}+20 \geq 0
\end{aligned}
$$

(b) (3 Marks) Is the following function convex? Strictly convex? Why?

$$
f=2 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+7 x_{1}+8 x_{2}+25
$$

3. (6 Marks) Write a MATLAB code to solve the following ODE using Euler method.

$$
\frac{d x}{d t}=-2 x \quad ; \quad \mathrm{x}(0)=3
$$

4. (a) (4 Marks) Find the maximum of $f(x)=2 x-1.75 x^{2}+1.1 x^{3}-0.25 x^{4}$ using golden section search method in the interval [-2, 4]. Perform 4 iterations and report the result in the following tabular form:

Iteration	a	b	x_{1}	x_{2}	$\mathrm{f}\left(\mathrm{x}_{1}\right)$	$\mathrm{f}\left(\mathrm{x}_{2}\right)$

(b) (2 Marks) Write a MATLAB code to solve the problem in Part (a)
5. (a) (3 Marks) Find the minimum of the following function in the interval [-4, -1$]$ using Fibonacci Search method to reduce the original interval of uncertainty to 20%.

$$
f(x)=x^{2}+4 x+7
$$

(b) (3 Marks) Carry out the initial and two additional iterations of the dichotomous search for the minimum of the following function in the interval $[0,1]$ with $\varepsilon=0.2$.

$$
f(x)=x^{2}-1.2 x-6.64
$$

