BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI Chemical Process Optimization (CHE G558), Mid Semester Examination
 Date - 12/10/2023 Open Book Maximum Marks - 30

1. A manufacturing firm produces two products, A and B , using two limited resources. The maximum amounts of resources 1 and 2 available per day are 1000 and 250 units, respectively. The production of 1 unit of product A requires 1 unit of resource 1 and 0.2 unit of resource 2, and the production of 1 unit of product B requires 0.5 unit of resource 1 and 0.5 unit of resource 2. The unit costs of resources 1 and 2 are given by the relations ($0.375-0.00005 \mathrm{u} 1$) and (0.75 $-0.0001 u 2$), respectively, where u_{i} denotes the number of units of resource i used $(i=1,2)$. The selling prices per unit of products A and $\mathrm{B}, \mathrm{p}_{\mathrm{A}}$ and p_{B}, are given by
$\mathrm{p}_{\mathrm{A}}=2.00-0.0005 \mathrm{x}_{\mathrm{A}}-0.00015 \mathrm{x}_{\mathrm{B}}$ and $\mathrm{p}_{\mathrm{B}}=3.50-0.0002 \mathrm{x}_{\mathrm{A}}-0.0015 \mathrm{x}_{\mathrm{B}}$
x_{A} and x_{B} indicate, respectively, the number of units of products A and B sold.
Formulate the problem of maximizing the profit assuming that the firm can sell all the units it manufactures.
2. Growth rate of bacteria $k\left(\mathrm{~d}^{-1}\right)$, as a function of oxygen concentration $\mathrm{c}(\mathrm{mg} / \mathrm{L})$ can be modeled by the following equation: $=\frac{k_{\max } c^{2}}{c_{s}+c^{2}}$. where c_{s} and $\mathrm{k}_{\max }$ are parameters. Use the data below to estimate the parameters (Apply linear regression technique)

c	0.5	0.8	1.5	2.5	4
k	1.1	2.4	5.3	7.6	8.9

3. Determine the extreme (stationary) points of the following function.

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+2 x_{1}^{2}+4 x_{2}^{2}+6 \tag{7}
\end{equation*}
$$

Classify all the extreme points as minimum, maximum or saddle point.
4. Minimize the function $f(x)=0.65-\left[0.75 /\left(1+x^{2}\right)\right]-0.65 x^{t a n^{-1}}(1 / x)$

Using golden section search. Start with an interval $[0,3]$ and perform three iterations
5. Consider the minimization of the function $f\left(x_{1}, x_{2}\right)=6 x_{1}^{2}+2 x_{2}^{2}-6 x_{1} x_{2}-x_{1}-2 x_{2}$

If $S_{1}=\left\{\begin{array}{l}1 \\ 2\end{array}\right\}$ denotes a search direction, find a direction S_{2} that is conjugate to the direction S_{1}.
6. It is required to minimize the function $\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$. Starting from point $X_{1}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$, determine X_{2} using steepest-descent method.

