BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI Chemical Process Optimization (CHE G558), Mid Semester Examination Date – 12/10/2023 Open Book Maximum Marks - 30

- 1. A manufacturing firm produces two products, A and B, using two limited resources. The maximum amounts of resources 1 and 2 available per day are 1000 and 250 units, respectively. The production of 1 unit of product A requires 1 unit of resource 1 and 0.2 unit of resource 2, and the production of 1 unit of product B requires 0.5 unit of resource 1 and 0.5 unit of resource 2. The unit costs of resources 1 and 2 are given by the relations (0.375 0.00005u1) and (0.75 0.0001u2), respectively, where u_i denotes the number of units of resource i used (i = 1, 2). The selling prices per unit of products A and B, p_A and p_B, are given by $p_A = 2.00 0.0005x_A 0.00015x_B$ and $p_B = 3.50 0.0002x_A 0.0015x_B$ x_A and x_B indicate, respectively, the number of units of products A and B sold. Formulate the problem of maximizing the profit assuming that the firm can sell all the units it manufactures. [4]
- 2. Growth rate of bacteria k (d⁻¹), as a function of oxygen concentration c (mg/L) can be modeled by the following equation: $=\frac{k_{max}c^2}{c_s+c^2}$. where c_s and k_{max} are parameters. Use the data below to estimate the parameters (Apply linear regression technique) [5]

с	0.5	0.8	1.5	2.5	4
k	1.1	2.4	5.3	7.6	8.9

3. Determine the extreme (stationary) points of the following function.

$$f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$$

Classify all the extreme points as minimum, maximum or saddle point.

4. Minimize the function $f(x) = 0.65 - \left[\frac{0.75}{(1+x^2)}\right] - 0.65xtan^{-1}(1/x)$

Using golden section search. Start with an interval [0, 3] and perform three iterations [5]

- 5. Consider the minimization of the function $f(x_1, x_2) = 6x_1^2 + 2x_2^2 6x_1x_2 x_1 2x_2$ If $S_1 = {1 \\ 2}$ denotes a search direction, find a direction S_2 that is conjugate to the direction S_1 . [5]
- 6. It is required to minimize the function $(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$. Starting from point $X_1 = \begin{cases} 0 \\ 0 \end{cases}$, determine X_2 using steepest-descent method. [4]

[7]