Birla Institute of Technology and Science, Pilani First Semester, 2016-17 CHE G622, Advanced Chemical Engineering Thermodynamics

Mid Semester Examination	4th October, 2016 (9:00 -10:30 AM)
Max Time: 90 min	Total Max Marks:75
• Concept is only important, not the answer	
• Refer the equations, table and book which you have used.	

- Box the final and intermediate answers
- Don't skip any mathematical steps-otherwise you will lose marks
- Mention unit for the intermediate and final answers-otherwise you will lose marks

Q1. Estimate specific volume, H^R, and S^R for 1,3-Butadiene at 500 K and 20 bar by using by the Soave/Redlich/Kwong equation. [10+5+5]

Q2: A liquid containing 60 mol% benzene and 40 mol% Toluene is continuously fed to a flash vaporizer which is maintained at 90 C and 760 Torr. Determine the compositions of the liquid and vapor streams leaving the flash unit and the fraction of feed which leaves as liquid. [15]

Q3: It is desired to store 100 kmol mixture of 70:30 mole ratio propane and n-pentane at 500 K and 150 bar. Determine the size of the tank using the pseudocritical properties estimated through Prausnitz-Gunn rule.

[10]

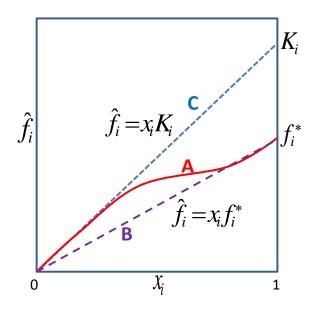
Q4: From the following vapor pressure data, construct the temperature - composition diagram at 1 atr	n, for
the system benzene-toluene, assuming ideal solution behavior.	[10]

Temperature °C	Vapor pressure, mm Hg	
	Benzene	Toluene
<mark>80</mark>	<mark>760</mark>	<mark>300</mark>
<mark>92</mark>	<mark>1078</mark>	<mark>432</mark>
<mark>100</mark>	<mark>1344</mark>	<mark>559</mark>
<mark>110.4</mark>	<mark>1748</mark>	<mark>760</mark>

Q5: Fill in the Blanks with right word(s). No marks will be awarded if you write one right one wrong, or leave one blank. [1x5]

a) For an ideal incompressible fluid, both , ______ expansivity and ______ compressibility are zero

b) The unit for virial coefficient B is _____ and for C is _____.


- c) For N2 virial coefficient C reaches a maximum at a temperature _____ and B shows negative value till the temperature _____.
- d) For a pure species coexisting liquid and vapor phases are in equilibrium when they have the same ______, _____, and fugacity.
- e) For a mechanically reversible, constant-volume, closed-system process, the heat transferred is equal to the ______ of the system.

Q6: Conceptual/Short Questions. Answer to the point. Concept is only important

- **a**) Explain the physical significance of the 4th virial coefficient term. Arrange the 1st to 4th virial coefficient terms in order of increasing contribution.
- b) Show the trends of the P-v plot for water at a temperature T< T_c, experimentally and by following SRK equation of state. Which plot follow the criteria of thermodynamic stability? Explain at least three points with proper schematic and logic. Not more that 3 lines per points will be allowed. [5]

[2]

- c) A thermodynamic system has the following equation of state. 2U/T=3NR and PV/T=NR Obtain the Gibbs-Duhem relation for the system in terms of R, specific internal energy (u) and specific volume (v).
- d) When we mix two unknown liquids X and Y in the amount of 100 mL of X and 50 mL of Y, we get 148 mL of solution. What can we say about the relative magnitudes of V_X , V_Y , V_X , and \overline{V}_Y ? [2.5]
- e) Consider that you want to estimate the actual fugacity of 'i' from the following graphs. Would you like to use Lewis-Randall rule and/or Henry's law? Explain by using 2-3 lines maximum. [3]

