2. Part-B answer book will be supplied after you return Part-A answer book.
3. Make and state suitable, logical and scientifically justifiable assumptions if necessary.

* Give just $2 \underline{\text { iterations }}$ for iterative procedure(s).
* Be to the point. Show all steps systematically.

If words are required, answer in bulleted points. Do not use paragraphs.

PART A CLOSE BOOK

Q1. [10 Marks] Kinetic Theory of Gases: List all the assumptions in a systematic manner. In a step-by-step manner, derive the expressions using which you can give insight into 2 important thermodynamic variables: pressure (P) and temperature (T). Give the physical significance thus evolved.

Q2. [10 Marks] Systematically, develop mathematical expressions for ideal work and lost work. Show : how shall you use these concepts in thermodynamic analysis of steady-state flow processes?

PART B ((ONLY OPEN TEXT BOOK)

Q3. [12 Marks] Use the Peng/Robinson equation to calculate the molar volumes of saturated liquid and saturated vapor for Sulfur Dioxide at $110^{\circ} \mathrm{C}$ where $P^{\text {sat }}=35.01$ bar and compare results with values found by suitable generalized correlations.

Q4. [12 Marks] Estimate Z, H^{R} and S^{R} for the equimolar mixture of Ethane and Ethylene at 350 K and 75 bar, by the Lee/Kesler correlations.

Q5. [12 Marks] For the system ethyl ethanoate (1) / n-heptane (2) at 343.15 K : $P_{1}{ }^{\text {sat }}=79.80 \mathrm{kPa} ; P_{2}{ }^{\text {sat }}=40.50 \mathrm{kPa} ; \quad \ln Y_{1}=0.95 x_{2}{ }^{2} ; \quad \ln Y_{2}=0.95 x_{1}{ }^{2}$. Assume the validity of Raoult's Law. (a) Make a BUBL P calculation for $T=343.15 \mathrm{~K}, x_{1}=0.05$;
(b) Make a DEW P calculation for $T=343.15 \mathrm{~K}, y_{1}=0.05$;
(c) What is the azeotrope composition and pressure at $T=343.15 \mathrm{~K}$?

Q6. [12 Marks] Estimate $\hat{f}_{1}, \hat{f}_{2}, \hat{\phi}_{1}$, and $\hat{\phi}_{2}$ for the system ethylene(1)/propylene(2) as a gas at $T=423.15 \mathrm{~K}, P=30 \mathrm{bar}$, and $y_{1}=0.35$: (a) Using virial equation of state; (b) Assuming that the mixture is an ideal solution.

Q7. [12 Marks] Catalytic dehydrogenation of 1-butene to 1, 3-butadiene proceeds as follows:

$$
\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})->\mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Side reactions are suppressed by the introduction of steam. If equilibrium is attained at 1000 K and 1.3 bar and if the reactor product contains $13-\mathrm{mol} \%$ butadiene, determine: (a) The mole fractions of the other species in the product gas; (b) The mole fraction of steam required in the feed.

